Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Clin Implant Dent Relat Res ; 24(4): 532-543, 2022 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-35639515

RESUMEN

BACKGROUND: Peri-implantitis has been suggested to cause significant increasing proportions of implant failure with increasing time. PURPOSE: To assess whether implant failure rates in long term studies are matching the supposed high prevalence of peri-implantitis. MATERIAL AND METHODS: This paper is written as a narrative review of the long-term clinical investigations available in the literature. RESULTS: Some implant systems have seen unacceptable marginal bone loss figures with time coupled to increased implant failure rates, resulting in the withdrawal of these systems. The reasons for such mishap are generally unknown, with the exception of one system failure that was found to be due to improper clinical handling. Modern, moderately rough implant systems have functioned excellently over 10-15 years of follow up with minor problems with marginal bone loss and implant failure rates within a few per cent. Machined implants have functioned adequately over 20-30 years of follow up. Implant failures occur predominantly during the first few years after implant placement. No significant increase of implant failures has been observed thereafter over 20-30 years of follow up. Over the years of our new millennium, scientific and technical advances have allowed the discovery of numerous molecular pathways and cellular interactions between the skeletal and immune system promoting the development of the interdisciplinary field called osteoimmunology. Nowadays, this knowledge has not only allowed the emergence of new etiologic paradigms for bone disease but also a new dynamic approach on the concept of osseointegration and MBL around oral implants, re-evaluating our older disease oriented outlook. This facilitates at the same time the emergence of translational applications with immunological perspectives, scientific approaches based on omics sciences, and the beginning of an era of personalized dental implant therapy to improve the prognosis of oral implant treatment. CONCLUSIONS: Oral implant systems have been found to function with very good clinical outcome over follow-up times of 20-30 years. Registered implant failures have occurred predominantly during the first few years after implantation, and there has been no significant increase in late failures due to peri-implantitis.


Asunto(s)
Pérdida de Hueso Alveolar , Implantes Dentales , Periimplantitis , Pérdida de Hueso Alveolar/epidemiología , Implantes Dentales/efectos adversos , Diseño de Prótesis Dental/efectos adversos , Humanos , Oseointegración , Periimplantitis/etiología
2.
Jpn Dent Sci Rev ; 57: 12-19, 2021 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-33737990

RESUMEN

There is a complex interaction between titanium dental implants, bone, and the immune system. Among them, specific immune cells, macrophages play a crucial role in the osseointegration dynamics. Infiltrating macrophages and resident macrophages (osteomacs) contribute to achieving an early pro-regenerative peri-implant environment. Also, multinucleated giant cells (MNGCs) in the bone-implant interface and their polarization ability, maintain a peri-implant immunological balance to preserve osseointegration integrity. However, dental implants can display cumulative levels of antigens (ions, nano and microparticles and bacterial antigens) at the implant-tissue interface activating an immune-inflammatory response. If the inflammation is not resolved or reactivated due to the stress signals and the immunogenicity of elements present, this could lead implants to aseptic loosening, infections, and subsequent bone loss. Therefore, to maintain osseointegration and prevent bone loss of implants, a better understanding of the osteoimmunology of the peri-implant environment would lead to the development of new therapeutic approaches. In this line, depicting osteoimmunological mechanisms, we discuss immunomodulatory strategies to improve and preserve a long-term functional integration between dental implants and the human body. Scientific field of dental science: implant dentistry.

3.
J Clin Med ; 8(2)2019 Jan 25.
Artículo en Inglés | MEDLINE | ID: mdl-30691022

RESUMEN

The permanent interaction between bone tissue and the immune system shows us the complex biology of the tissue in which we insert oral implants. At the same time, new knowledge in relation to the interaction of materials and the host, reveals to us the true nature of osseointegration. So, to achieve clinical success or perhaps most importantly, to understand why we sometimes fail, the study of oral implantology should consider the following advice equally important: a correct clinical protocol, the study of the immunomodulatory capacity of the device and the osteoimmunobiology of the host. Although osseointegration may seem adequate from the clinical point of view, a deeper vision shows us that a Foreign Body Equilibrium could be susceptible to environmental conditions. This is why maintaining this cellular balance should become our therapeutic target and, more specifically, the understanding of the main cell involved, the macrophage. The advent of new information, the development of new implant surfaces and the introduction of new therapeutic proposals such as therapeutic mechanotransduction, will allow us to maintain a healthy host-implant relationship long-term.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...