Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
IEEE Trans Pattern Anal Mach Intell ; 44(3): 1338-1356, 2022 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-32915725

RESUMEN

The density-based clustering algorithm is a fundamental data clustering technique with many real-world applications. However, when the database is frequently changed, how to effectively update clustering results rather than reclustering from scratch remains a challenging task. In this work, we introduce IncAnyDBC, a unique parallel incremental data clustering approach to deal with this problem. First, IncAnyDBC can process changes in bulks rather than batches like state-of-the-art methods for reducing update overheads. Second, it keeps an underlying cluster structure called the object node graph during the clustering process and uses it as a basis for incrementally updating clusters wrt. inserted or deleted objects in the database by propagating changes around affected nodes only. In additional, IncAnyDBC actively and iteratively examines the graph and chooses only a small set of most meaningful objects to produce exact clustering results of DBSCAN or to approximate results under arbitrary time constraints. This makes it more efficient than other existing methods. Third, by processing objects in blocks, IncAnyDBC can be efficiently parallelized on multicore CPUs, thus creating a work-efficient method. It runs much faster than existing techniques using one thread while still scaling well with multiple threads. Experiments are conducted on various large real datasets for demonstrating the performance of IncAnyDBC.

2.
J Healthc Inform Res ; 5(4): 474-496, 2021 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-35419508

RESUMEN

As more data is generated from medical attendances and as Artificial Neural Networks gain momentum in research and industry, computer-aided medical prognosis has become a promising technology. A common approach to perform automated prognoses relies on textual clinical notes extracted from Electronic Health Records (EHRs). Data from EHRs are fed to neural networks that produce a set with the most probable medical problems to which a patient is subject in her/his clinical future, including clinical conditions, mortality, and readmission. Following this research line, we introduce a methodology that takes advantage of the unstructured text found in clinical notes by applying preprocessing, concepts extraction, and fine-tuned neural networks to predict the most probable medical problems to follow in a patient's clinical trajectory. Different from former works that focus on word embeddings and raw sets of extracted concepts, we generate a refined set of Unified Medical Language System (UMLS) concepts by applying a similarity threshold filter and a list of acceptable concept types. In our prediction experiments, our method demonstrated AUC-ROC performance of 0.91 for diagnosis codes, 0.93 for mortality, and 0.72 for readmission, determining an efficacy that rivals state-of-the-art works. Our findings contribute to the development of automated prognosis systems in hospitals where text is the main source of clinical history.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...