Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 10 de 10
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
PLoS One ; 13(2): e0193554, 2018.
Artículo en Inglés | MEDLINE | ID: mdl-29489900

RESUMEN

Human Cytomegalovirus (CMV) reactivation remains a major source of morbidity in patients after solid organ and hematopoietic stem cell transplantation (HSCT). Adoptive T cell therapy (ACT) with CMV-specific T cells is a promising therapeutic approach for HSCT recipients, but might be counteracted by CMV's immune evasion strategies. HLA-C*07:02 is less susceptible to viral immune evasion suggesting HLA-C*07:02-restricted viral epitopes as promising targets for ACT. For a better understanding of HLA-C*07:02-restricted CMV-specific T cells we used recently generated reversible HLA-C*07:02/IE-1 multimers (Streptamers) recognizing a CMV-derived Immediate-Early-1 (IE-1) epitope and analyzed phenotypic and functional T cell characteristics. Initially, we detected very high frequencies of HLA-C*07:02/IE-1 multimer+ T cells (median = 11.35%), as well as robust functional responses after stimulation with IE-1 peptide (IFNγ+; median = 5.02%) in healthy individuals. However, MHC-multimer+ and IFNγ-secreting T cell frequencies showed a relatively weak correlation (r2 = 0.77), which could be attributed to an unexpected contribution of CMV-epitope-independent KIR2DL2/3-binding of HLA-C*07:02/IE-1 multimers. Therefore, we developed a MHC-multimer double-staining approach against a cancer epitope-specific HLA-C*07:02 multimer to identify truly HLA-C*07:02/IE-1 epitope-specific T cells. The frequencies of these truly HLA-C*07:02/IE-1 multimer+ T cells were still high (median = 6.86%) and correlated now strongly (r2 = 0.96) with IFNγ-secretion. Interestingly, HLA-C*07:02/IE-1-restricted T cells contain substantial numbers with a central memory T cell phenotype, indicating high expansion potential e.g. for ACT. In line with that, we developed a clinical enrichment protocol avoiding epitope-independent KIR-binding to make HLA-C*07:02/IE-1-restricted T cells available for ACT. Initial depletion of KIR-expressing CD8+ T cells followed by HLA-C*07:02/IE-1 Streptamer positive selection using paramagnetic labeling techniques allowed to enrich successfully HLA-C*07:02/IE-1-restricted T cells. Such specifically enriched populations of functional HLA-C*07:02/IE-1-restricted T cells with significant central memory T cell content could become a potent source for ACT.


Asunto(s)
Linfocitos T CD8-positivos/inmunología , Citomegalovirus/inmunología , Antígenos HLA-C/inmunología , Infecciones por Citomegalovirus/cirugía , Humanos , Trasplante de Riñón , Fenotipo
2.
Vaccine ; 35(38): 5131-5139, 2017 09 12.
Artículo en Inglés | MEDLINE | ID: mdl-28818566

RESUMEN

Infection with human cytomegalovirus (HCMV) can cause severe complications in newborns and immunocompromised patients, and a prophylactic or therapeutic vaccine against HCMV is not available. Here, we generated a HCMV vaccine candidate fulfilling the regulatory requirements for GMP-compliant production and clinical testing. A novel synthetic fusion gene consisting of the coding sequences of HCMV pp65 and IE1 having a deleted nuclear localization sequence and STAT2 binding domain was introduced into the genome of the attenuated vaccinia virus strain MVA. This recombinant MVA, MVA-syn65_IE1, allowed for the production of a stable ∼120kDa syn65_IE1 fusion protein upon tissue culture infection. MVA-syn65_IE1 infected CD40-activated B cells activated and expanded pp65- and IE1-specific T cells derived from HCMV-seropositive donors to at least equal levels as control recombinant MVA expressing single genes for pp65 or IE1. Additionally, we show that MVA-syn65_IE1 induced HCMV pp65- and IE1-epitope specific T cells in HLA-A2.1-/HLA-DR1-transgenic H-2 class I-/class II-knockout mice. Thus, MVA-syn65_IE1 represents a promising vaccine candidate against HCMV and constitutes a basis for the generation of a multivalent vaccine targeting relevant pathogens in immunocompromised patients.


Asunto(s)
Antígenos Virales/inmunología , Citomegalovirus/inmunología , Animales , Citomegalovirus/genética , Infecciones por Citomegalovirus/genética , Infecciones por Citomegalovirus/inmunología , Epítopos de Linfocito T/inmunología , Femenino , Vectores Genéticos/genética , Herpesviridae/genética , Herpesviridae/inmunología , Humanos , Ratones , Infecciones por Poxviridae/genética , Infecciones por Poxviridae/inmunología , Proteínas Virales/genética , Proteínas Virales/inmunología
3.
Front Immunol ; 6: 598, 2015.
Artículo en Inglés | MEDLINE | ID: mdl-26635812

RESUMEN

T-cell responses to the immediate-early 1 (IE-1) protein of human cytomegalovirus (HCMV) are associated with protection from viral disease. Thus, IE-1 is a promising target for immunotherapy. CD8 T-cell responses to IE-1 are generally strong. In contrast, CD4 T-cell responses to IE-1 were described to be comparatively infrequent or undetectable in HCMV carriers, and information on their target epitopes and their function has been limited. To analyze the repertoire of IE-1-specific CD4 T cells, we expanded them from healthy donors with autologous IE-1-expressing mini-Epstein-Barr virus-transformed B-cell lines and established IE-1-specific CD4 T-cell clones. Clones from seven out of seven HCMV-positive donors recognized endogenously processed IE-1 epitopes restricted through HLA-DR, DQ, or DP. Three to seven IE-1 epitopes were recognized per donor. Cumulatively, about 27 different HLA/peptide class II complexes were recognized by 117 IE-1-specific clones. Our results suggest that a highly diversified repertoire of IE-1-specific CD4 T cells targeting multiple epitopes is usually present in healthy HCMV carriers. Therefore, multiepitope approaches to immunomonitoring and immunotherapy will make optimal use of this potentially important class of HCMV-specific effector cells.

4.
Planta ; 242(3): 561-73, 2015 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-25916309

RESUMEN

MAIN CONCLUSION: Multiple F3'5'H evolution from F3'H has occurred in dicotyledonous plants. Efficient pollinator attraction is probably the driving force behind, as this allowed for the synthesis of delphinidin-based blue anthocyanins. The cytochrome P450-dependent monooxygenases flavonoid 3'-hydroxylase (F3'H) and flavonoid 3',5'-hydroxylase (F3'5'H) hydroxylate the B-ring of flavonoids at the 3'- and 3'- and 5'-position, respectively. Their divergence took place early in plant evolution. While F3'H is ubiquitously present in higher plants, the distribution of F3'5'H is scattered. Here, we report that F3'5'H has repeatedly evolved from F3'H precursors at least four times in dicotyledonous plants: In the Asteraceae, we identified F3'5'Hs specific for the subfamilies Cichorioideae and Asteroideae, and additionally an F3'5'H that seems to be specific for the genus Echinops of the subfamily Carduoideae; moreover, characterisation of a sequence from Billardiera heterophylla (formerly Sollya heterophylla) (Pittosporaceae) showed that the independent evolution of an F3'5'H has occurred at least once also in another family. The evolution of F3'5'H from an F3'H precursor represents a gain of enzymatic function, probably triggered by an amino acid change at one position of substrate recognition site 6. The gain of F3'5'H activity allows for the synthesis of delphinidin-based anthocyanins which usually provide the basis for lilac to blue flower colours. Therefore, the need for an efficient pollinator attraction is probably the driving force behind the multiple F3'5'H evolution.


Asunto(s)
Sistema Enzimático del Citocromo P-450/metabolismo , Evolución Molecular , Sistema Enzimático del Citocromo P-450/genética , Regulación de la Expresión Génica de las Plantas
5.
J Virol ; 88(24): 14326-39, 2014 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-25275132

RESUMEN

UNLABELLED: The human cytomegalovirus (CMV) UL11 open reading frame (ORF) encodes a putative type I transmembrane glycoprotein which displays remarkable amino acid sequence variability among different CMV isolates, suggesting that it represents an important virulence factor. In a previous study, we have shown that UL11 can interact with the cellular receptor tyrosine phosphatase CD45, which has a central role for signal transduction in T cells, and treatment of T cells with large amounts of a soluble UL11 protein inhibited their proliferation. In order to analyze UL11 expression in CMV-infected cells, we constructed CMV recombinants whose genomes either encode tagged UL11 versions or carry a stop mutation in the UL11 ORF. Moreover, we examined whether UL11 affects the function of virus-specific cytotoxic T lymphocytes (CTLs). We found that the UL11 ORF gives rise to several proteins due to both posttranslational modification and alternative translation initiation sites. Biotin labeling of surface proteins on infected cells indicated that only highly glycosylated UL11 forms are present at the plasma membrane, whereas less glycosylated UL11 forms were found in the endoplasmic reticulum. We did not find evidence of UL11 cleavage or secretion of a soluble UL11 version. Cocultivation of CTLs recognizing different CMV epitopes with fibroblasts infected with a UL11 deletion mutant or the parental strain revealed that under the conditions applied UL11 did not influence the activation of CMV-specific CD8 T cells. For further studies, we propose to investigate the interaction of UL11 with CD45 and the functional consequences in other immune cells expressing CD45. IMPORTANCE: Human cytomegalovirus (CMV) belongs to those viruses that extensively interfere with the host immune response, yet the precise function of many putative immunomodulatory CMV proteins remains elusive. Previously, we have shown that the CMV UL11 protein interacts with the leukocyte common antigen CD45, a cellular receptor tyrosine phosphatase with a central role for signal transduction in T cells. Here, we examined the proteins expressed by the UL11 gene in CMV-infected cells and found that at least one form of UL11 is present at the cell surface, enabling it to interact with CD45 on immune cells. Surprisingly, CMV-expressed UL11 did not affect the activity of virus-specific CD8 T cells. This finding warrants investigation of the impact of UL11 on CD45 functions in other leukocyte subpopulations.


Asunto(s)
Linfocitos T CD8-positivos/inmunología , Citomegalovirus/inmunología , Glicoproteínas/inmunología , Proteínas Virales/inmunología , Células Cultivadas , Técnicas de Cocultivo , Fibroblastos/virología , Glicoproteínas/biosíntesis , Humanos , Activación de Linfocitos , Proteínas Virales/biosíntesis
6.
J Immunol ; 192(12): 5894-905, 2014 Jun 15.
Artículo en Inglés | MEDLINE | ID: mdl-24808364

RESUMEN

Immunoevasive proteins ("evasins") of human CMV (HCMV) modulate stability and localization of MHC class I (MHC I) molecules, and their supply of antigenic peptides. However, it is largely unknown to what extent these evasins interfere with recognition by virus-specific CD8 T cells. We analyzed the recognition of HCMV-infected cells by a panel of CD8 T cells restricted through one of nine different MHC I allotypes. We employed a set of HCMV mutants deleted for three or all four of the MHC I modulatory genes US2, US3, US6, and US11. We found that different HCMV evasins exhibited different allotype-specific patterns of interference with CD8 T cell recognition of infected cells. In contrast, recognition of different epitopes presented by the same given MHC I allotype was uniformly reduced. For some allotypes, single evasins largely abolished T cell recognition; for others, a concerted action of evasins was required to abrogate recognition. In infected cells whose Ag presentation efficiency had been enhanced by IFN-γ pretreatment, HCMV evasins cooperatively impared T cell recognition for several different MHC I allotypes. T cell recognition and MHC I surface expression under influence of evasins were only partially congruent, underscoring the necessity to probe HCMV immunomodulation using specific T cells. We conclude that the CD8 T cell evasins of HCMV display MHC I allotype specificity, complementarity, and cooperativity.


Asunto(s)
Alelos , Antígenos Virales/inmunología , Linfocitos T CD8-positivos/inmunología , Infecciones por Citomegalovirus/inmunología , Citomegalovirus/inmunología , Antígenos de Histocompatibilidad Clase I/inmunología , Evasión Inmune , Presentación de Antígeno/genética , Presentación de Antígeno/inmunología , Linfocitos T CD8-positivos/patología , Línea Celular , Infecciones por Citomegalovirus/genética , Infecciones por Citomegalovirus/patología , Femenino , Antígenos de Histocompatibilidad Clase I/genética , Humanos , Masculino
7.
PLoS Pathog ; 9(5): e1003383, 2013.
Artículo en Inglés | MEDLINE | ID: mdl-23717207

RESUMEN

Control of human cytomegalovirus (HCMV) depends on CD8+ T cell responses that are shaped by an individual's repertoire of MHC molecules. MHC class I presentation is modulated by a set of HCMV-encoded proteins. Here we show that HCMV immunoevasins differentially impair T cell recognition of epitopes from the same viral antigen, immediate-early 1 (IE-1), that are presented by different MHC class I allotypes. In the presence of immunoevasins, HLA-A- and HLA-B-restricted T cell clones were ineffective, but HLA-C*0702-restricted T cell clones recognized and killed infected cells. Resistance of HLA-C*0702 to viral immunoevasins US2 and US11 was mediated by the alpha3 domain and C-terminal region of the HLA heavy chain. In healthy donors, HLA-C*0702-restricted T cells dominated the T cell response to IE-1. The same HLA-C allotype specifically protected infected cells from attack by NK cells that expressed a corresponding HLA-C-specific KIR. Thus, allotype-specific viral immunoevasion allows HCMV to escape control by NK cells and HLA-A- and HLA-B-restricted T cells, while the virus becomes selectively vulnerable to an immunodominant population of HLA-C-restricted T cells. Our work identifies a T cell population that may be of particular efficiency in HCMV-specific immunotherapy.


Asunto(s)
Presentación de Antígeno , Linfocitos T CD8-positivos/inmunología , Infecciones por Citomegalovirus/inmunología , Citomegalovirus/inmunología , Epítopos de Linfocito T/inmunología , Antígenos de Histocompatibilidad Clase I/inmunología , Evasión Inmune , Linfocitos T CD8-positivos/patología , Infecciones por Citomegalovirus/patología , Femenino , Humanos , Proteínas Inmediatas-Precoces/inmunología , Células Asesinas Naturales/inmunología , Células Asesinas Naturales/patología , Masculino , Estructura Terciaria de Proteína , Proteínas de Unión al ARN/inmunología , Proteínas del Envoltorio Viral/inmunología , Proteínas Virales/inmunología
8.
J Gen Virol ; 94(Pt 2): 376-386, 2013 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-23100361

RESUMEN

Human cytomegalovirus (HCMV) interferes with MHC class I-restricted antigen presentation and thereby reduces recognition by CD8(+) T-cells. This interference is mediated primarily by endoplasmic reticulum-resident glycoproteins that are encoded in the US2-11 region of the viral genome. Such a suppression of recognition would be of particular importance immediately after infection, because several immunodominant viral antigens are already present in the cell in this phase. However, which of the evasion proteins gpUS2-11 interfere(s) with antigen presentation to CD8(+) T-cells at this time of infection is not known. Here we address this question, using recombinant viruses (RV) that express only one of the immunoevasins gpUS2, gpUS3 or gpUS11. Infection with RV-US3 had only a limited impact on the presentation of peptides from the CD8(+) T-cell antigens IE1 and pp65 under immediate-early (IE) conditions imposed by cycloheximide/actinomycin D blocking. Unexpectedly, both RV-US2 and RV-US11 considerably impaired the recognition of IE1 and pp65 by CD8(+) T-cells, and both US2 and, to a lesser extent, US11 were transcribed under IE conditions. Thus, gpUS2 and gpUS11 are key effectors of MHC class I immunoevasion immediately after HCMV infection.


Asunto(s)
Linfocitos T CD8-positivos/inmunología , Citomegalovirus/inmunología , Citomegalovirus/patogenicidad , Evasión Inmune , Tolerancia Inmunológica , Proteínas de Unión al ARN/inmunología , Proteínas del Envoltorio Viral/inmunología , Proteínas Virales/inmunología , Línea Celular , Infecciones por Citomegalovirus/inmunología , Infecciones por Citomegalovirus/virología , Antígenos de Histocompatibilidad Clase I/inmunología , Humanos , Factores de Virulencia/inmunología
9.
Virus Res ; 157(1): 71-5, 2011 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-21320557

RESUMEN

Infection of small laboratory animals by Punta Toro virus (PTV), family Bunyaviridae, genus Phlebovirus, is a model for the study of the human pathogen Rift Valley fever virus (RVFV). We have identified inbred mouse strains with significant differences in host response to the Adames strain of PTV. Nine inbred strains of mice representing major branches in the Mus musculus phylogeny were inoculated subcutaneously with a high dose of PTV in survival experiments. Two inbred strains of mice, NZW/LacJ and 129S1/SvImJ, died ~4 days after PTV infection, whereas 7 other strains survived the challenge and showed no clinical signs of disease. Histologically, 129S1/SvImJ mice showed massive hepatocellular necrosis and had additional lesions in lung, brain, and spleen, whereas NZW/LacJ mice had mild piecemeal hepatocellular necrosis. PTV viral loads in the livers of infected mice were determined by reverse transcriptase quantitative PCR. Inbred mice from strains that showed clinical signs and succumbed to PTV infection had higher liver viral loads than did mice of resistant strains. Hybrid F1 mice were generated by crossing susceptible 129S1 and resistant FVB/N mice and tested for susceptibility. The hybrid F1 mice showed significantly higher viral loads in the liver than the resistant parental FVB/N mice, suggesting that susceptibility is dominant. These findings will enable an unbiased genetic approach to identify host genes mediating susceptibility to PTV.


Asunto(s)
Predisposición Genética a la Enfermedad , Variación Genética , Phlebovirus/crecimiento & desarrollo , Phlebovirus/patogenicidad , Animales , Modelos Animales de Enfermedad , Hígado/virología , Masculino , Ratones , Ratones Endogámicos , Fenotipo , Reacción en Cadena de la Polimerasa de Transcriptasa Inversa , Carga Viral
10.
FEBS Lett ; 581(18): 3429-34, 2007 Jul 24.
Artículo en Inglés | MEDLINE | ID: mdl-17612530

RESUMEN

Flavonoid 3'-hydroxylase (F3'H) and flavonoid 3',5'-hydroxylase (F3'5'H) are cytochrome P450 enzymes and determine the B-ring hydroxylation pattern of flavonoids by introducing hydroxyl groups at the 3'- or the 3'- and 5'-position, respectively. Sequence identity between F3'H and F3'5'H is generally low since their divergence took place early in the evolution of higher plants. However, in the Asteraceae the family-specific evolution of an F3'5'H from an F3'H precursor occurred, and consequently sequence identity is substantially higher. We used this phenomenon for alignment studies, in order to identify regions which could be involved in determining substrate specificity and functionality. Subsequent construction and expression of chimeric genes indicated that substrate specificity of F3'H and F3'5'H is determined near the N-terminal end and the functional difference between these two enzymes near the C-terminal end. The impact on function of individual amino acids located in substrate recognition site 6 (SRS6) was further tested by site-directed mutagenesis. Most interestingly, a conservative Thr to Ser exchange at position 487 conferred additional 5'-hydroxylation activity to recombinant Gerbera hybrida F3'H, whereas the reverse substitution transformed recombinant Osteospermum hybrida F3'5'H into an F3'H with low remaining 5'-hydroxylation activity. Since the physicochemical properties of Thr and Ser are highly similar, the difference in size appears to be the main factor contributing to functional difference. The results further suggest that relatively few amino acids exchanges were required for the evolutionary extension of 3'- to 3',5'-hydroxylation activity.


Asunto(s)
Sistema Enzimático del Citocromo P-450/metabolismo , Oxigenasas de Función Mixta/metabolismo , Aminoácidos/genética , Aminoácidos/metabolismo , Asteraceae/enzimología , Sistema Enzimático del Citocromo P-450/genética , Flavonoides/química , Flavonoides/metabolismo , Oxigenasas de Función Mixta/genética , Estructura Molecular , Mutagénesis Sitio-Dirigida , Proteínas Recombinantes/genética , Proteínas Recombinantes/metabolismo , Especificidad por Sustrato
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...