Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 15 de 15
Filtrar
1.
Int J Mol Sci ; 25(5)2024 Mar 06.
Artículo en Inglés | MEDLINE | ID: mdl-38474280

RESUMEN

Over the past decade, long non-coding RNAs (lncRNAs) have been recognized as key players in gene regulation, influencing genome organization and expression. The locus-specific binding of these non-coding RNAs (ncRNAs) to DNA involves either a non-covalent interaction with DNA-bound proteins or a direct sequence-specific interaction through the formation of RNA:DNA triplexes. In an effort to develop a novel strategy for characterizing a triple-helix formation, we employed atomic force microscopy (AFM) to visualize and study a regulatory RNA:DNA triplex formed between the Khps1 lncRNA and the enhancer of the proto-oncogene SPHK1. The analysis demonstrates the successful formation of RNA:DNA triplexes under various conditions of pH and temperature, indicating the effectiveness of the AFM strategy. Despite challenges in discriminating between the triple-helix and R-loop configurations, this approach opens new perspectives for investigating the role of lncRNAs in gene regulation at the single-molecule level.


Asunto(s)
ARN Largo no Codificante , Secuencia de Bases , Microscopía de Fuerza Atómica , ARN Largo no Codificante/genética , Conformación de Ácido Nucleico , ADN/química
2.
Pharmaceutics ; 15(1)2023 Jan 11.
Artículo en Inglés | MEDLINE | ID: mdl-36678885

RESUMEN

Pulmonary surfactant (PS) has been proposed as an efficient drug delivery vehicle for inhaled therapies. Its ability to adsorb and spread interfacially and transport different drugs associated with it has been studied mainly by different surface balance designs, typically interconnecting various compartments by interfacial paper bridges, mimicking in vitro the respiratory air-liquid interface. It has been demonstrated that only a monomolecular surface layer of PS/drug is able to cross this bridge. However, surfactant films are typically organized as multi-layered structures associated with the interface. The aim of this work was to explore the contribution of surface-associated structures to the spreading of PS and the transport of drugs. We have designed a novel vehiculization balance in which donor and recipient compartments are connected by a whole three-dimensional layer of liquid and not only by an interfacial bridge. By combining different surfactant formulations and liposomes with a fluorescent lipid dye and a model hydrophobic drug, budesonide (BUD), we observed that the use of the bridge significantly reduced the transfer of lipids and drug through the air-liquid interface in comparison to what can be spread through a fully open interfacial liquid layer. We conclude that three-dimensional structures connected to the surfactant interfacial film can provide an important additional contribution to interfacial delivery, as they are able to transport significant amounts of lipids and drugs during surfactant spreading.

3.
Pharmaceutics ; 14(7)2022 Jul 20.
Artículo en Inglés | MEDLINE | ID: mdl-35890402

RESUMEN

Thiazolidinediones (TZDs) are potent PPARγ agonists that have been shown to attenuate alveolar simplification after prolonged hyperoxia in term rodent models of bronchopulmonary dysplasia. However, the pulmonary outcomes of postnatal TZDs have not been investigated in preterm animal models. Here, we first investigated the PPARγ selectivity, epithelial permeability, and lung tissue binding of three types of TZDs in vitro (rosiglitazone (RGZ), pioglitazone, and DRF-2546), followed by an in vivo study in preterm rabbits exposed to hyperoxia (95% oxygen) to investigate the pharmacokinetics and the pulmonary outcomes of daily RGZ administration. In addition, blood lipids and a comparative lung proteomics analysis were also performed on Day 7. All TZDs showed high epithelial permeability through Caco-2 monolayers and high plasma and lung tissue binding; however, RGZ showed the highest affinity for PPARγ. The pharmacokinetic profiling of RGZ (1 mg/kg) revealed an equivalent biodistribution after either intratracheal or intraperitoneal administration, with detectable levels in lungs and plasma after 24 h. However, daily RGZ doses of 1 mg/kg did not improve lung function in preterm rabbits exposed to hyperoxia, and daily 10 mg/kg doses were even associated with a significant lung function worsening, which could be partially explained by the upregulation of lung inflammation and lipid metabolism pathways revealed by the proteomic analysis. Notably, daily postnatal RGZ produced an aberrant modulation of serum lipids, particularly in rabbit pups treated with the 10 mg/kg dose. In conclusion, daily postnatal RGZ did not improve lung function and caused dyslipidemia in preterm rabbits exposed to hyperoxia.

4.
Curr Med Chem ; 29(3): 526-590, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-34525915

RESUMEN

Pulmonary surfactant is a complex lipoprotein mixture secreted into the alveolar lumen by type 2 pneumocytes, which is composed by tens of different lipids (approximately 90% of its entire mass) and surfactant proteins (approximately 10% of the mass). It is crucially involved in maintaining lung homeostasis by reducing the values of alveolar liquid surface tension close to zero at end-expiration, thereby avoiding the alveolar collapse, and assembling a chemical and physical barrier against inhaled pathogens. A deficient amount of surfactant or its functional inactivation is directly linked to a wide range of lung pathologies, including the neonatal respiratory distress syndrome. This paper reviews the main biophysical concepts of surfactant activity and its inactivation mechanisms, and describes the past, present and future roles of surfactant replacement therapy, focusing on the exogenous surfactant preparations marketed worldwide and new formulations under development. The closing section describes the pulmonary surfactant in the context of drug delivery. Thanks to its peculiar composition, biocompatibility, and alveolar spreading capability, the surfactant may work not only as a shuttle to the branched anatomy of the lung for other drugs but also as a modulator for their release, leading to innovative therapeutic avenues for the treatment of several respiratory diseases.


Asunto(s)
Surfactantes Pulmonares , Síndrome de Dificultad Respiratoria del Recién Nacido , Materiales Biocompatibles/uso terapéutico , Sistemas de Liberación de Medicamentos , Humanos , Recién Nacido , Pulmón , Surfactantes Pulmonares/uso terapéutico , Síndrome de Dificultad Respiratoria del Recién Nacido/tratamiento farmacológico
5.
Anal Bioanal Chem ; 413(16): 4363-4371, 2021 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-34002273

RESUMEN

Corticosteroids as budesonide can be effective in reducing topic inflammation processes in different organs. Therapeutic use of budesonide in respiratory diseases, like asthma, chronic obstructive pulmonary disease, and allergic rhinitis is well known. However, the pulmonary distribution of budesonide is not well understood, mainly due to the difficulties in tracing the molecule in lung samples without the addition of a label. In this paper, we present a matrix-assisted laser desorption/ionization mass spectrometry imaging protocol that can be used to visualize the pulmonary distribution of budesonide administered to a surfactant-depleted adult rabbit. Considering that budesonide is not easily ionized by MALDI, we developed an on-tissue derivatization method with Girard's reagent P followed by ferulic acid deposition as MALDI matrix. Interestingly, this sample preparation protocol results as a very effective strategy to raise the sensitivity towards not only budesonide but also other corticosteroids, allowing us to track its distribution and quantify the drug inside lung samples.


Asunto(s)
Budesonida/farmacocinética , Glucocorticoides/farmacocinética , Pulmón/metabolismo , Animales , Budesonida/administración & dosificación , Budesonida/análisis , Glucocorticoides/administración & dosificación , Glucocorticoides/análisis , Indicadores y Reactivos , Conejos , Espectrometría de Masa por Láser de Matriz Asistida de Ionización Desorción/métodos , Esteroides/administración & dosificación , Esteroides/análisis , Esteroides/farmacocinética
6.
Am J Respir Cell Mol Biol ; 63(3): 327-337, 2020 09.
Artículo en Inglés | MEDLINE | ID: mdl-32348683

RESUMEN

No in vivo data are available regarding the effect of meconium on human surfactant in the early stages of severe meconium aspiration syndrome (MAS). In the present study, we sought to characterize the changes in surfactant composition, function, and structure during the early phase of meconium injury. We designed a translational prospective cohort study of nonbronchoscopic BAL of neonates with severe MAS (n = 14) or no lung disease (n = 18). Surfactant lipids were analyzed by liquid chromatography-high-resolution mass spectrometry. Secretory phospholipase A2 subtypes IB, V, and X and SP-A (surfactant protein A) were assayed by ELISA. SP-B and SP-C were analyzed by Western blotting under both nonreducing and reducing conditions. Surfactant function was assessed by adsorption test and captive bubble surfactometry, and lung aeration was evaluated by semiquantitative lung ultrasound. Surfactant nanostructure was studied using cryo-EM and atomic force microscopy. Several changes in phospholipid subclasses were detected during MAS. Lysophosphatidylcholine species released by phospholipase A2 hydrolysis were increased. SP-B and SP-C were significantly increased together with some shorter immature forms of SP-B. Surfactant function was impaired and correlated with poor lung aeration. Surfactant nanostructure was significantly damaged in terms of vesicle size, tridimensional complexity, and compactness. Various alterations of surfactant phospholipids and proteins were detected in the early phase of severe meconium aspiration and were due to hydrolysis and inflammation and a defensive response. This impairs both surfactant structure and function, finally resulting in reduced lung aeration. These findings support the development of new surfactant protection and antiinflammatory strategies for severe MAS.


Asunto(s)
Pulmón/efectos de los fármacos , Síndrome de Aspiración de Meconio/tratamiento farmacológico , Surfactantes Pulmonares/farmacología , Tensoactivos/farmacología , Antiinflamatorios/farmacología , Humanos , Recién Nacido , Pulmón/metabolismo , Síndrome de Aspiración de Meconio/metabolismo , Síndrome de Aspiración de Meconio/fisiopatología , Fosfolipasas A2/efectos de los fármacos , Fosfolipasas A2/metabolismo , Fosfolípidos/metabolismo , Surfactantes Pulmonares/metabolismo
7.
PLoS One ; 15(3): e0230229, 2020.
Artículo en Inglés | MEDLINE | ID: mdl-32168331

RESUMEN

Poractant alfa and Calsurf are two natural surfactants widely used in China for the treatment of neonatal respiratory distress syndrome, which are extracted from porcine and calf lungs, respectively. The purpose of this experimental study was to compare their in vitro characteristics and in vivo effects in the improvement of pulmonary function and protection of lung injury. The biophysical properties, ultrastructure, and lipid composition of both surfactant preparations were respectively analysed in vitro by means of Langmuir-Blodgett trough (LBT), atomic force microscopy (AFM), and liquid-chromatography mass-spectrometry (LC-MS). Then, as core pharmacological activity, both head-to-head (100 and 200 mg/kg for both surfactants) and licensed dose comparisons (70 mg/kg Calsurf vs. 200 mg/kg Poractant alfa) between the two surfactants were conducted as prophylaxis in preterm rabbits with primary surfactant deficiency, assessing survival time and rate and dynamic compliance of the respiratory system (Cdyn). Intrapulmonary surfactant pools, morphometric volume density as alveolar expansion (Vv), and lung injury scores were determined post mortem. AFM and LC-MS analysis revealed qualitative differences in the ultrastructure as well as in the lipid composition of both preparations. Calsurf showed a longer plateau region of the LBT isotherm and lower film compressibility. In vivo, both surfactant preparations improved Cdyn at any dose, although maximum benefits in terms of Vv and intrapulmonary surfactant pools were seen with the 200 mg/kg dose in both surfactants. The group of animals treated with 200 mg/kg of Poractant alfa showed a prolonged survival time and rate compared to untreated but ventilated controls, and significantly ameliorated lung injury compared to Calsurf at any dose, including 200 mg/kg. The overall outcomes suggest the pulmonary effects to be dose dependent for both preparations. The group of animals treated with 200 mg/kg of Poractant alfa showed a significant reduction of mortality. Compared to Calsurf, Poractant alfa exerted better effects if licensed doses were compared, which requires further investigation.


Asunto(s)
Productos Biológicos/farmacología , Pulmón/efectos de los fármacos , Fosfolípidos/farmacología , Surfactantes Pulmonares/farmacología , Animales , China , Humanos , Recién Nacido , Recien Nacido Prematuro , Conejos , Respiración Artificial/métodos , Síndrome de Dificultad Respiratoria del Recién Nacido/tratamiento farmacológico , Porcinos
8.
Mol Nutr Food Res ; 64(5): e1900890, 2020 03.
Artículo en Inglés | MEDLINE | ID: mdl-31914208

RESUMEN

SCOPE: Amyloid-ß oligomers (AßO) are causally related to Alzheimer's disease (AD). Dietary natural compounds, especially flavonoids and flavan-3-ols, hold great promise as potential AD-preventive agents but their host and gut microbiota metabolism complicates identification of the most relevant bioactive species. This study aims to investigate the ability of a comprehensive set of phenyl-γ-valerolactones (PVL), the main circulating metabolites of flavan-3-ols and related dietary compounds in humans, to prevent AßO-mediated toxicity. METHODS AND RESULTS: The anti-AßO activity of PVLs is examined in different cell model systems using a highly toxic ß-oligomer-forming polypeptide (ß23) as target toxicant. Multiple PVLs, and particularly the monohydroxylated 5-(4'-hydroxyphenyl)-γ-valerolactone metabolite [(4'-OH)-PVL], relieve ß-oligomer-induced cytotoxicity in yeast and mammalian cells. As revealed by atomic force microscopy (AFM) and other in vitro assays, (4'-OH)-PVL interferes with AßO (but not fibril) assembly and actively remodels preformed AßOs into nontoxic amorphous aggregates. In keeping with the latter mode of action, treatment of AßOs with (4'-OH)-PVL prior to brain injection strongly reduces memory deterioration as well as neuroinflammation in a mouse model of AßO-induced memory impairment. CONCLUSION: PVLs, which have been validated as biomarkers of the dietary intake of flavan-3-ols, lend themselves as novel AßO-selective, candidate AD-preventing compounds.


Asunto(s)
Péptidos beta-Amiloides/metabolismo , Lactonas/farmacología , Trastornos de la Memoria/prevención & control , Enfermedad de Alzheimer/etiología , Enfermedad de Alzheimer/prevención & control , Péptidos beta-Amiloides/genética , Péptidos beta-Amiloides/toxicidad , Animales , Modelos Animales de Enfermedad , Flavonoides/química , Células HEK293 , Humanos , Lactonas/metabolismo , Masculino , Ratones Endogámicos C57BL , Fragmentos de Péptidos/metabolismo , Levaduras/efectos de los fármacos
9.
Metallomics ; 11(10): 1729-1742, 2019 10 16.
Artículo en Inglés | MEDLINE | ID: mdl-31502621

RESUMEN

Metal complexes still represent promising pharmacological tools in the development of new anticancer drugs. Bis(citronellalthiosemicarbazonate)nickel(ii) is a metal compound extremely effective against leukemic and NCS cancer cell lines. Preliminary experiments performed with this compound and with its Cu(ii) and Pt(ii) analogues evidenced alterations, detectable by comet assay, in the DNA of treated U937 cells. In addition, [Cu(tcitr)2] and [Pt(tcitr)2] were also able to induce gene mutations and produce frameshift events. To gain further insights into the mechanism of action of these metal compounds, we carried out a multidisciplinary study to investigate whether their biological activity can be ascribed to the direct interaction with DNA or with chromatin. The DNA interaction was investigated by means of CD and UV-Vis spectroscopic techniques and by AFM, whereas the chromatin interaction was studied by analyzing the effects of the compounds on the structure of a peptide that mimicks the potential metal binding site in the "C-tail" region of histone H2A by means of NMR, CD, UV-Vis and MS. The intensities of the effects induced by the metal compounds on the peptide follow the order [Ni(tcitr)2] > [Pt(tcitr)2] ≫ [Cu(tcitr)2]. From the AFM data, a remarkable DNA compaction was observed in the presence of [Pt(tcitr)2], while [Ni(tcitr)2] causes the formation of large interlaced DNA aggregates.


Asunto(s)
Antineoplásicos/farmacología , Cobre/farmacología , Níquel/farmacología , Platino (Metal)/farmacología , Tiosemicarbazonas/farmacología , Antineoplásicos/química , Línea Celular Tumoral , Complejos de Coordinación/química , Complejos de Coordinación/farmacología , Cobre/química , ADN/metabolismo , Histonas/metabolismo , Humanos , Neoplasias/tratamiento farmacológico , Neoplasias/metabolismo , Níquel/química , Platino (Metal)/química , Tiosemicarbazonas/química
10.
Sci Rep ; 7(1): 12051, 2017 09 21.
Artículo en Inglés | MEDLINE | ID: mdl-28935987

RESUMEN

Plasmids carry genes that give bacteria beneficial traits and allow them to survive in competitive environments. In many cases, they also harbor toxin-antitoxin (TA) systems necessary for plasmid maintenance. TA systems are generally characterized by a stable "toxin", a protein or peptide capable of killing the cell upon plasmid loss and by an unstable "antitoxin", a protein or a non-coding RNA that inhibits toxin activity. Here we report data toward the identification of a RNA-regulated TA system in the plasmid DNA of L. rhamnosus isolated from cheese. The proposed TA system comprises two convergently transcribed RNAs: a toxin RNA encoding a 29 amino acid peptide named Lpt and an antitoxin non-coding RNA. Both toxin and antitoxin RNAs resulted upregulated under conditions mimicking cheese ripening. The toxicity of the Lpt peptide was demonstrated in E. coli by cloning the Lpt ORF under the control of an inducible promoter. Bioinformatics screening of the bacterial nucleotide database, shows that regions homologous to the Lpt TA locus are widely distributed in the Lactobacillus genus, particularly within the L. casei group, suggesting a relevant role of TA systems in plasmid maintenance of cheese microbiota.


Asunto(s)
ADN Bacteriano/genética , Lacticaseibacillus rhamnosus/genética , Plásmidos/genética , Sistemas Toxina-Antitoxina/genética , Secuencia de Aminoácidos , Proteínas Bacterianas/genética , Proteínas Bacterianas/metabolismo , Toxinas Bacterianas/genética , Toxinas Bacterianas/metabolismo , Secuencia de Bases , Queso/microbiología , ADN Bacteriano/metabolismo , Regulación Bacteriana de la Expresión Génica , Lacticaseibacillus rhamnosus/metabolismo , Péptidos/genética , Péptidos/metabolismo , Plásmidos/metabolismo , ARN Bacteriano/genética , Homología de Secuencia de Aminoácido , Homología de Secuencia de Ácido Nucleico
11.
PLoS One ; 12(1): e0169190, 2017.
Artículo en Inglés | MEDLINE | ID: mdl-28060859

RESUMEN

Nasal continuous positive airway pressure (nCPAP) is a widely accepted technique of non-invasive respiratory support in spontaneously-breathing premature infants with respiratory distress syndrome (RDS). Surfactant administration techniques compatible with nCPAP ventilation strategy are actively investigated. Our aim is to set up and validate a respiratory distress animal model that can be managed on nCPAP suitable for surfactant administration techniques studies. Surfactant depletion was induced by bronchoalveolar lavages (BALs) on 18 adult rabbits. Full depletion was assessed by surfactant component analysis on the BALs samples. Animals were randomized into two groups: Control group (nCPAP only) and InSurE group, consisting of a bolus of surfactant (Poractant alfa, 200 mg/kg) followed by nCPAP. Arterial blood gases were monitored until animal sacrifice, 3 hours post treatment. Lung mechanics were evaluated just before and after BALs, at the time of treatment, and at the end of the procedure. Surfactant phospholipids and protein analysis as well as surface tension measurements on sequential BALs confirmed the efficacy of the surfactant depletion procedure. The InSurE group showed a significant improvement of blood oxygenation and lung mechanics. On the contrary, no signs of recovery were appreciated in animals treated with just nCPAP. The surfactant-depleted adult rabbit RDS model proved to be a valuable and efficient preclinical tool for mimicking the clinical scenario of preterm infants affected by mild/moderate RDS who spontaneously breathe and do not require mechanical ventilation. This population is of particular interest as potential target for the non-invasive administration of surfactant.


Asunto(s)
Modelos Animales de Enfermedad , Síndrome de Dificultad Respiratoria del Recién Nacido/fisiopatología , Animales , Análisis de los Gases de la Sangre , Cromatografía Liquida , Presión de las Vías Aéreas Positiva Contínua , Espectrometría de Masas , Modelos Teóricos , Fosfolípidos/sangre , Surfactantes Pulmonares/administración & dosificación , Conejos , Distribución Aleatoria , Tensoactivos
12.
Biochim Biophys Acta Gen Subj ; 1861(1 Pt A): 3474-3489, 2017 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-27640111

RESUMEN

BACKGROUND: GabR is a transcriptional regulator belonging to the MocR/GabR family, characterized by a N-terminal wHTH DNA-binding domain and a C-terminal effector binding and/or oligomerization domain, structurally homologous to aminotransferases (ATs). In the presence of γ-aminobutyrate (GABA) and pyridoxal 5'-phosphate (PLP), GabR activates the transcription of gabT and gabD genes involved in GABA metabolism. METHODS: Here we report a biochemical and atomic force microscopy characterization of Bacillus subtilis GabR in complex with DNA. Complexes were assembled in vitro to study their stoichiometry, stability and conformation. RESULTS: The fractional occupancy of the GabR cognate site suggests that GabR binds as a dimer with Kd of 10nM. Upon binding GabR bends the DNA by 80° as measured by anomalous electrophoretic mobility. With GABA we observed a decrease in affinity and conformational rearrangements compatible with a less compact nucleo-protein complex but no changes of the DNA bending angle. By employing promoter and GabR mutants we found that basic residues of the positively charged groove on the surface of the AT domain affect DNA affinity. CONCLUSIONS: The present data extend current understanding of the GabR-DNA interaction and the effect of GABA and PLP. A model for the GabR-DNA complex, corroborated by a docking simulation, is proposed. GENERAL SIGNIFICANCE: Characterization of the GabR DNA binding mode highlights the key role of DNA bending and interactions with bases outside the canonical direct repeats, and might be of general relevance for the action mechanism of MocR transcription factors.


Asunto(s)
Bacillus subtilis/metabolismo , Proteínas Bacterianas/metabolismo , ADN Bacteriano/química , ADN Bacteriano/metabolismo , Conformación de Ácido Nucleico , Fosfato de Piridoxal/metabolismo , Factores de Transcripción/metabolismo , Proteínas Bacterianas/química , Secuencia de Bases , Dicroismo Circular , Microscopía de Fuerza Atómica , Modelos Moleculares , Proteínas Mutantes/metabolismo , Regiones Promotoras Genéticas/genética , Unión Proteica , Dominios Proteicos , Secuencias Repetitivas de Ácidos Nucleicos/genética , Alineación de Secuencia , Espectrofotometría Ultravioleta , Electricidad Estática , Ácido gamma-Aminobutírico/metabolismo
13.
Nucleic Acids Res ; 43(10): 5249-62, 2015 May 26.
Artículo en Inglés | MEDLINE | ID: mdl-25916853

RESUMEN

The stringent response modulators, guanosine tetraphosphate (ppGpp) and protein DksA, bind RNA polymerase (RNAP) and regulate gene expression to adapt bacteria to different environmental conditions. Here, we use Atomic Force Microscopy and in vitro transcription assays to study the effects of these modulators on the conformation and stability of the open promoter complex (RPo) formed at the rrnA P1, rrnB P1, its discriminator (dis) variant and λ pR promoters. In the absence of modulators, RPo formed at these promoters show different extents of DNA wrapping which correlate with the position of UP elements. Addition of the modulators affects both DNA wrapping and RPo stability in a promoter-dependent manner. Overall, the results obtained under different conditions of ppGpp, DksA and initiating nucleotides (iNTPs) indicate that ppGpp allosterically prevents the conformational changes associated with an extended DNA wrapping that leads to RPo stabilization, while DksA interferes directly with nucleotide positioning into the RNAP active site. At the iNTPs-sensitive rRNA promoters ppGpp and DksA display an independent inhibitory effect, while at the iNTPs-insensitive pR promoter DksA reduces the effect of ppGpp in accordance with their antagonistic role.


Asunto(s)
ARN Polimerasas Dirigidas por ADN/metabolismo , Proteínas de Escherichia coli/metabolismo , Escherichia coli/genética , Regulación Bacteriana de la Expresión Génica , Guanosina Tetrafosfato/metabolismo , Regiones Promotoras Genéticas , Iniciación de la Transcripción Genética , Bacteriófago lambda/genética , ADN Bacteriano/química , ADN Bacteriano/ultraestructura , Escherichia coli/enzimología , Genes de ARNr , Ribonucleótidos/metabolismo , Transcripción Genética
14.
Part Fibre Toxicol ; 11: 63, 2014 Dec 09.
Artículo en Inglés | MEDLINE | ID: mdl-25487314

RESUMEN

BACKGROUND: In light of recent developments in nanotechnologies, interest is growing to better comprehend the interaction of nanoparticles with body tissues, in particular within the cardiovascular system. Attention has recently focused on the link between environmental pollution and cardiovascular diseases. Nanoparticles <50 nm in size are known to pass the alveolar-pulmonary barrier, enter into bloodstream and induce inflammation, but the direct pathogenic mechanisms still need to be evaluated. We thus focused our attention on titanium dioxide (TiO2) nanoparticles, the most diffuse nanomaterial in polluted environments and one generally considered inert for the human body. METHODS: We conducted functional studies on isolated adult rat cardiomyocytes exposed acutely in vitro to TiO2 and on healthy rats administered a single dose of 2 mg/Kg TiO2 NPs via the trachea. Transmission electron microscopy was used to verify the actual presence of TiO2 nanoparticles within cardiac tissue, toxicological assays were used to assess lipid peroxidation and DNA tissue damage, and an in silico method was used to model the effect on action potential. RESULTS: Ventricular myocytes exposed in vitro to TiO2 had significantly reduced action potential duration, impairment of sarcomere shortening and decreased stability of resting membrane potential. In vivo, a single intra-tracheal administration of saline solution containing TiO2 nanoparticles increased cardiac conduction velocity and tissue excitability, resulting in an enhanced propensity for inducible arrhythmias. Computational modeling of ventricular action potential indicated that a membrane leakage could account for the nanoparticle-induced effects measured on real cardiomyocytes. CONCLUSIONS: Acute exposure to TiO2 nanoparticles acutely alters cardiac excitability and increases the likelihood of arrhythmic events.


Asunto(s)
Contaminantes Atmosféricos/toxicidad , Arritmias Cardíacas/inducido químicamente , Ventrículos Cardíacos/efectos de los fármacos , Exposición por Inhalación/efectos adversos , Nanopartículas del Metal/toxicidad , Titanio/toxicidad , Potenciales de Acción/efectos de los fármacos , Animales , Arritmias Cardíacas/fisiopatología , Permeabilidad de la Membrana Celular/efectos de los fármacos , Células Cultivadas , Simulación por Computador , Daño del ADN , Acoplamiento Excitación-Contracción/efectos de los fármacos , Sistema de Conducción Cardíaco/efectos de los fármacos , Sistema de Conducción Cardíaco/fisiopatología , Ventrículos Cardíacos/citología , Ventrículos Cardíacos/fisiopatología , Ventrículos Cardíacos/ultraestructura , Peroxidación de Lípido/efectos de los fármacos , Masculino , Nanopartículas del Metal/administración & dosificación , Modelos Biológicos , Miocitos Cardíacos/citología , Miocitos Cardíacos/efectos de los fármacos , Miocitos Cardíacos/ultraestructura , Ratas Wistar , Titanio/administración & dosificación , Pruebas de Toxicidad Aguda
15.
Microb Cell Fact ; 10 Suppl 1: S16, 2011 Aug 30.
Artículo en Inglés | MEDLINE | ID: mdl-21995649

RESUMEN

BACKGROUND: Cell surface pili in Gram positive bacteria have been reported to orchestrate the colonization of host tissues, evasion of immunity and the development of biofilms. So far, little if any information is available on the presence of pilus-like structures in human gut commensals like bifidobacteria. RESULTS AND DISCUSSION: In this report, Atomic Force Microscopy (AFM) of various bifidobacterial strains belonging to Bifidobacterium bifidum, Bifidobacterium longum subsp. longum, Bifidobacterium dentium, Bifidobacterium adolescentis and Bifidobacterium animalis subsp. lactis revealed the existence of appendages resembling pilus-like structures. Interestingly, these microorganisms harbour two to six predicted pilus gene clusters in their genome, with each organized in an operon encompassing the major pilin subunit-encoding gene (designated fimA or fimP) together with one or two minor pilin subunit-encoding genes (designated as fimB and/or fimQ), and a gene encoding a sortase enzyme (strA). Quantitative Real Time (qRT)-PCR analysis and RT-PCR experiments revealed a polycistronic mRNA, encompassing the fimA/P and fimB/Q genes, which are differentially expressed upon cultivation of bifidobacteria on various glycans.


Asunto(s)
Bifidobacterium/genética , Bifidobacterium/ultraestructura , Fimbrias Bacterianas/genética , Bifidobacterium/crecimiento & desarrollo , Fimbrias Bacterianas/ultraestructura , Genoma Bacteriano , Humanos , Filogenia , Análisis de Secuencia de ADN
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA