Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Mol Metab ; 4(2): 106-17, 2015 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-25685698

RESUMEN

OBJECTIVES: Certain nutrients positively regulate energy homeostasis via intestinal gluconeogenesis (IGN). The objective of this study was to evaluate the impact of a deficient IGN in glucose control independently of nutritional environment. METHODS: We used mice deficient in the intestine glucose-6 phosphatase catalytic unit, the key enzyme of IGN (I-G6pc (-/-) mice). We evaluated a number of parameters involved in energy homeostasis, including insulin sensitivity (hyperinsulinemic euglycaemic clamp), the pancreatic function (insulin secretion in vivo and in isolated islets) and the hypothalamic homeostatic function (leptin sensitivity). RESULTS: Intestinal-G6pc (-/-) mice exhibit slight fasting hyperglycaemia and hyperinsulinemia, glucose intolerance, insulin resistance and a deteriorated pancreatic function, despite normal diet with no change in body weight. These defects evoking type 2 diabetes (T2D) derive from the basal activation of the sympathetic nervous system (SNS). They are corrected by treatment with an inhibitor of α-2 adrenergic receptors. Deregulation in a key target of IGN, the homeostatic hypothalamic function (highlighted here through leptin resistance) is a mechanistic link. Hence the leptin resistance and metabolic disorders in I-G6pc (-/-) mice are corrected by rescuing IGN by portal glucose infusion. Finally, I-G6pc (-/-) mice develop the hyperglycaemia characteristic of T2D more rapidly under high fat/high sucrose diet. CONCLUSIONS: Intestinal gluconeogenesis is a mandatory function for the healthy neural control of glucose homeostasis.

2.
PLoS One ; 7(7): e39087, 2012.
Artículo en Inglés | MEDLINE | ID: mdl-22802935

RESUMEN

OBJECTIVE: This study aims at exploring the effects of sodium tungstate treatment on hypothalamic plasticity, which is known to have an important role in the control of energy metabolism. METHODS: Adult lean and high-fat diet-induced obese mice were orally treated with sodium tungstate. Arcuate and paraventricular nuclei and lateral hypothalamus were separated and subjected to proteomic analysis by DIGE and mass spectrometry. Immunohistochemistry and in vivo magnetic resonance imaging were also performed. RESULTS: Sodium tungstate treatment reduced body weight gain, food intake, and blood glucose and triglyceride levels. These effects were associated with transcriptional and functional changes in the hypothalamus. Proteomic analysis revealed that sodium tungstate modified the expression levels of proteins involved in cell morphology, axonal growth, and tissue remodeling, such as actin, CRMP2 and neurofilaments, and of proteins related to energy metabolism. Moreover, immunohistochemistry studies confirmed results for some targets and further revealed tungstate-dependent regulation of SNAP25 and HPC-1 proteins, suggesting an effect on synaptogenesis as well. Functional test for cell activity based on c-fos-positive cell counting also suggested that sodium tungstate modified hypothalamic basal activity. Finally, in vivo magnetic resonance imaging showed that tungstate treatment can affect neuronal organization in the hypothalamus. CONCLUSIONS: Altogether, these results suggest that sodium tungstate regulates proteins involved in axonal and glial plasticity. The fact that sodium tungstate could modulate hypothalamic plasticity and networks in adulthood makes it a possible and interesting therapeutic strategy not only for obesity management, but also for other neurodegenerative illnesses like Alzheimer's disease.


Asunto(s)
Axones/efectos de los fármacos , Hipotálamo/fisiología , Neuroglía/efectos de los fármacos , Plasticidad Neuronal/efectos de los fármacos , Obesidad/tratamiento farmacológico , Compuestos de Tungsteno/uso terapéutico , Animales , Dieta Alta en Grasa , Metabolismo Energético/efectos de los fármacos , Hipotálamo/efectos de los fármacos , Péptidos y Proteínas de Señalización Intercelular , Masculino , Ratones , Ratones Endogámicos C57BL , Ratones Obesos , Proteínas del Tejido Nervioso/efectos de los fármacos , Procesamiento Proteico-Postraduccional
3.
Diabetes ; 60(12): 3121-31, 2011 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-22013018

RESUMEN

OBJECTIVE: Since the pioneering work of Claude Bernard, the scientific community has considered the liver to be the major source of endogenous glucose production in all postabsorptive situations. Nevertheless, the kidneys and intestine can also produce glucose in blood, particularly during fasting and under protein feeding. The aim of this study was to better define the importance of the three gluconeogenic organs in glucose homeostasis. RESEARCH DESIGN AND METHODS: We investigated blood glucose regulation during fasting in a mouse model of inducible liver-specific deletion of the glucose-6-phosphatase gene (L-G6pc(-/-) mice), encoding a mandatory enzyme for glucose production. Furthermore, we characterized molecular mechanisms underlying expression changes of gluconeogenic genes (G6pc, Pck1, and glutaminase) in both the kidneys and intestine. RESULTS: We show that the absence of hepatic glucose release had no major effect on the control of fasting plasma glucose concentration. Instead, compensatory induction of gluconeogenesis occurred in the kidneys and intestine, driven by glucagon, glucocorticoids, and acidosis. Moreover, the extrahepatic action of glucagon took place in wild-type mice. CONCLUSIONS: Our study provides a definitive quantitative estimate of the capacity of extrahepatic gluconeogenesis to sustain fasting endogenous glucose production under the control of glucagon, regardless of the contribution of the liver. Thus, the current dogma relating to the respective role of the liver and of extrahepatic gluconeogenic organs in glucose homeostasis requires re-examination.


Asunto(s)
Glucemia/metabolismo , Ayuno/metabolismo , Glucagón/metabolismo , Gluconeogénesis/fisiología , Glucosa/metabolismo , Mucosa Intestinal/metabolismo , Riñón/metabolismo , Hígado/metabolismo , Acidosis/genética , Acidosis/metabolismo , Animales , Glucemia/genética , Western Blotting , Inmunoprecipitación de Cromatina , Ayuno/sangre , Gluconeogénesis/genética , Glucosa-6-Fosfatasa/genética , Glucosa-6-Fosfatasa/metabolismo , Glutaminasa/genética , Glutaminasa/metabolismo , Insulina/metabolismo , Intestinos/enzimología , Riñón/enzimología , Masculino , Ratones , Ratones Endogámicos C57BL , Ratones Noqueados , Fosfoenolpiruvato Carboxiquinasa (GTP)/genética , Fosfoenolpiruvato Carboxiquinasa (GTP)/metabolismo
4.
Physiol Behav ; 105(1): 89-93, 2011 Nov 30.
Artículo en Inglés | MEDLINE | ID: mdl-21402089

RESUMEN

Protein-enriched diets are well known to initiate satiety effects in animals and humans. It has been recently suggested that this might be dependent on the induction of gluconeogenesis in the intestine. The resulting intestinal glucose release, detected by a "so-called" glucose sensor located within the walls of the portal vein and connected to peripheral afferents, activates hypothalamic nuclei involved in the regulation of food intake, in turn initiating a decrease in hunger. To definitively demonstrate the role of intestinal gluconeogenesis in this mechanism, we tested the food intake response to a protein-enriched diet in mice with an intestine-specific deletion (using an inducible Cre/loxP strategy) of the glucose-6 phosphatase gene (I-G6pc(-/-) mice) encoding the mandatory enzyme for glucose production. There was no effect on food intake in I-G6pc(-/-) mice fed on a standard rodent diet compared to their wild-type counterparts. After switching to a protein-enriched diet, the food intake of wild-type mice decreased significantly (by about 20% of daily calorie intake), subsequently leading to a decrease of 12 ± 2% of initial body weight after 8 days. On the contrary, I-G6pc(-/-) mice were insensitive to the satiety effect induced by a protein-enriched diet and preserved their body weight. These results provide molecular evidence of the causal role of intestinal gluconeogenesis in the satiety phenomenon initiated by protein-enriched diets.


Asunto(s)
Proteínas en la Dieta/metabolismo , Ingestión de Alimentos/fisiología , Gluconeogénesis/fisiología , Glucosa-6-Fosfatasa/genética , Mucosa Intestinal/metabolismo , Saciedad/fisiología , Animales , Glucosa-6-Fosfatasa/metabolismo , Ratones , Ratones Transgénicos
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...