Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 46
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
ACS Infect Dis ; 2024 Jun 03.
Artículo en Inglés | MEDLINE | ID: mdl-38829047

RESUMEN

Leishmaniasis, one of the most overlooked tropical diseases, is a life-threatening illness caused by the parasite Leishmania donovani that is prevalent in underdeveloped nations. Over 350 million individuals in more than 90 different nations worldwide are at risk of contracting the disease, which has a current fatality rate of 50 000 mortalities each year. The administration of liposomal Amp B, pentavalent antimonials, and miltefosine are still considered integral components of the chemotherapy regimen. Antileishmanial medications fail to treat leishmaniasis because of their numerous drawbacks. These include inadequate effectiveness, toxicity, undesired side effects, drug resistance, treatment duration, and cost. Consequently, there is a need to overcome the limitations of conventional therapeutics. Nanotechnology has demonstrated promising outcomes in addressing these issues because of its small size and distinctive characteristics, such as enhanced bioavailability, lower toxicity, biodegradability, and targeted drug delivery. This review is an effort to highlight the recent progress in various nanodrug delivery systems (nDDSs) over the past five years for treating leishmaniasis. Although the preclinical outcomes of nDDSs have shown promising treatment for leishmaniasis, further research is needed for their clinical translation. Advancement in three primary priority domains─molecular diagnostics, clinical investigation, and knowledge dissemination and standardization─is imperative to propel the leishmaniasis field toward translational outcomes.

2.
Int J Pharm ; 648: 123579, 2023 Dec 15.
Artículo en Inglés | MEDLINE | ID: mdl-37931727

RESUMEN

The research work aimed to develop a robust sustained release biocompatible brinzolamide (BRZ)-loaded ocular inserts (MeltSerts) using hot-melt extrusion technology with enhanced solubility for glaucoma management. A 32 rotatable central composite design was employed for the optimization of the MeltSerts to achieve sustained release. The effect of two independent factors was examined: Metolose® SR 90SH-100000SR (HPMC, hydroxypropyl methyl cellulose) and Kolliphor® P 407 (Poloxamer 407, P407). The drug release (DR) of BRZ at 0.5 h and 8 h were adopted as dependent responses. The factorial analysis resulted in an optimum composition of 50.00 % w/w of HPMC and 15.00 % w/w of P407 which gave % DR of 9.11 at 0.5 h and 69.10 at 8 h. Furthermore, molecular dynamic simulations were performed to elucidate various interactions between BRZ, and other formulation components and it was observed that BRZ showed maximum interactions with HPC and HPMC with an occupancy of 92.82 and 52.87 %, respectively. Additionally, molecular docking studies were performed to understand the interactions between BRZ and mucoadhesive polymers with ocular mucin (MUC-1). The results indicated a docking score of only -5.368 for BRZ alone, whereas a significantly higher docking score was observed for the optimized Meltserts -6.977, suggesting enhanced retention time of the optimized MeltSerts. SEM images displayed irregular surfaces, while EDS analysis validated uniform BRZ distribution in the optimized formulation. The results of the ocular irritancy studies both ex vivo and in vivo demonstrated that MeltSerts are safe for ocular use. The results indicate that the developed MeltSerts Technology has the potential to manufacture ocular inserts with cost-effectiveness, one-step processability, and enhanced product quality. Nonetheless, it also offers a once-daily regimen, consequently decreasing the dosing frequency, preservative exposure, and ultimately better glaucoma management.


Asunto(s)
Glaucoma , Simulación de Dinámica Molecular , Humanos , Preparaciones de Acción Retardada/uso terapéutico , Simulación del Acoplamiento Molecular , Glaucoma/tratamiento farmacológico , Solubilidad , Tecnología
3.
Int J Pharm ; 645: 123386, 2023 Oct 15.
Artículo en Inglés | MEDLINE | ID: mdl-37678475

RESUMEN

Phloretin (PHL), a flavonoid of the dihydrogen chalcone class, is reported to have low oral bioavailability due to its poor solubility and absorption. A common approach to enhance the solubility of such flavonoids is solubilization in a polymeric or lipidic matrix which would help in enhance dissolution rate and solubility. Accordingly, in the current study PHL was dissolved in Gelucire® 44/14 by melt-fusion technique and the viscous semisolid melt was adsorbed on a solid carrier to obtain free flowing granules. SeDeM-SLA (Solid-Liquid Adsorption) expert system was employed to select the most suitable carrier. This study achieved positive outcomes through the successful development of formulated oral PHL granules. The granules exhibited good stability, and favourable pharmacokinetic properties. In addition, the selected carrier effectively retained the antioxidant properties of PHL.

4.
Heliyon ; 9(6): e16498, 2023 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-37292344

RESUMEN

The knowledge of powder properties has been highlighted since the 19th century since most formulations focus on solid dosage forms, and powder flow is essential for various manufacturing operations. A poor powder flow may generate problems in the manufacturing processes and cause the plant's malfunction. Hence these problems should be studied and rectified beforehand by various powder flow techniques to improve and enhance powder flowability. The powder's physical properties can be determined using compendial and non-compendial methods. The non-compendial practices generally describe the powder response under the stress and shear experienced during their processing. The primary interest of the current report is to summarize the flow problems and enlist the techniques to eliminate the issues associated with the powder's flow properties, thereby increasing plant output and minimizing the production process inconvenience with excellent efficiency. In this review, we discuss powder flow and its measurement techniques and mainly focus on various approaches to improve the cohesive powder flow property.

5.
Eur J Pharm Biopharm ; 188: 108-124, 2023 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-37182553

RESUMEN

In situ gelling systems (ISGS) can prolong retention time and bioavailability of ophthalmic solutions. The complexity and cost of ISGS avert their industrial scale-up and clinical implementation. In this study, we demonstrate novel application of hot-melt extrusion (HME) technology for continuous manufacturing of ISGS (MeltDrops Technology). Timolol maleate (TIM) and dorzolamide hydrochloride (DRZ) loaded MeltDrops were successfully developed using HME for glaucoma management, thereby resolving issues with batch manufacturing of ISGS, prolonging retention time thus improving bioavailability. The MeltDrops technology involves one-step, i.e., passing all the ingredients through an extruder at a screw speed between 20 and 50 rpm and barrel temperature of 80 °C. The comparative evaluation of MeltDrops and batch-processed ISGS demonstrated that MeltDrops exhibited better physical and chemical content uniformity. The extrusion temperature and screw speed were critical factors influencing content uniformity and properties of the MeltDrops. MeltDrops showed sustained drug release for > 12 h in vitro (TIM = 83.07%; DRZ = 60.43%, 12 h) versus marketed eyedrops. The developed MeltDrops followed Peppas-Sahlin model, combining Fickian diffusion and swelling processes. The in vivo study in New Zealand rabbits revealed superior effectiveness and safety of the MeltDrops as compared to the marketed eyedrops. Herein we conclude, MeltDrops would serve as a cutting-edge platform technology that can be used to manufacture various ISGS with one-step processability, cost-effectiveness, and improved product quality, which are otherwise processed by batch manufacturing that involves numerous complex processing steps.


Asunto(s)
Tecnología de Extrusión de Fusión en Caliente , Tecnología Farmacéutica , Animales , Conejos , Disponibilidad Biológica , Liberación de Fármacos , Calor , Simulación por Computador , Composición de Medicamentos
7.
Future Med Chem ; 15(7): 579-582, 2023 04.
Artículo en Inglés | MEDLINE | ID: mdl-37140141

RESUMEN

Organoids provide us an opportunity to understand how diseases affect cellular physiology, human tissues or organs. They are indespensible tools for biomaterial toxicity analysis, drug discovery and regenerative medicine.


Asunto(s)
Materiales Biocompatibles , Organoides , Humanos , Materiales Biocompatibles/toxicidad , Medicina Regenerativa , Descubrimiento de Drogas
8.
ACS Omega ; 8(13): 11674-11699, 2023 Apr 04.
Artículo en Inglés | MEDLINE | ID: mdl-37033812

RESUMEN

Surfactants are a group of amphiphilic molecules (i.e., having both hydrophobic and hydrophilic domains) that are a vital part of nearly every contemporary industrial process such as in agriculture, medicine, personal care, food, and petroleum. In general surfactants can be derived from (i) petroleum-based sources or (ii) microbial/plant origins. Petroleum-based surfactants are obvious results from petroleum products, which lead to petroleum pollution and thus pose severe problems to the environment leading to various ecological damages. Thus, newer techniques have been suggested for deriving surfactant molecules and maintaining environmental sustainability. Biosurfactants are surfactants of microbial or plant origins and offer much added advantages such as high biodegradability, lesser toxicity, ease of raw material availability, and easy applicability. Thus, they are also termed "green surfactants". In this regard, this review focused on the advantages of biosurfactants over the synthetic surfactants produced from petroleum-based products along with their potential applications in different industries. We also provided their market aspects and future directions that can be considered with selections of biosurfactants. This would open up new avenues for surfactant research by overcoming the existing bottlenecks in this field.

9.
Pharmaceuticals (Basel) ; 16(4)2023 Apr 18.
Artículo en Inglés | MEDLINE | ID: mdl-37111369

RESUMEN

Calendula officinalis Linn. (CO) is a popular medicinal plant from the plant kingdom's Asteraceae family that has been used for millennia. This plant contains flavonoids, triterpenoids, glycosides, saponins, carotenoids, volatile oil, amino acids, steroids, sterols, and quinines. These chemical constituents confer multifaceted biological effects such as anti-inflammatory, anti-cancer, antihelminthic, antidiabetes, wound healing, hepatoprotective, and antioxidant activities. Additionally, it is employed in cases of certain burns and gastrointestinal, gynecological, ocular, and skin conditions. In this review, we have discussed recent research from the last five years on the therapeutic applications of CO and emphasized its myriad capabilities as a traditional medicine. We have also elucidated CO's molecular mechanisms and recent clinical studies. Overall, this review intends to summarize, fill in the gaps in the existing research, and provide a wealth of possibilities for researchers working to validate traditional claims and advance the safe and effective use of CO in treating various ailments.

10.
J Integr Med ; 21(3): 236-244, 2023 05.
Artículo en Inglés | MEDLINE | ID: mdl-36973157

RESUMEN

Cannabidiol (CBD), a nonpsychotropic phytocannabinoid that was once largely disregarded, is currently the subject of significant medicinal study. CBD is found in Cannabis sativa, and has a myriad of neuropharmacological impacts on the central nervous system, including the capacity to reduce neuroinflammation, protein misfolding and oxidative stress. On the other hand, it is well established that CBD generates its biological effects without exerting a large amount of intrinsic activity upon cannabinoid receptors. Because of this, CBD does not produce undesirable psychotropic effects that are typical of marijuana derivatives. Nonetheless, CBD displays the exceptional potential to become a supplementary medicine in various neurological diseases. Currently, many clinical trials are being conducted to investigate this possibility. This review focuses on the therapeutic effects of CBD in managing neurological disorders like Alzheimer's disease, Parkinson's disease and epilepsy. Overall, this review aims to build a stronger understanding of CBD and provide guidance for future fundamental scientific and clinical investigations, opening a new therapeutic window for neuroprotection. Please cite this article as: Tambe SM, Mali S, Amin PD, Oliveira M. Neuroprotective potential of Cannabidiol: Molecular mechanisms and clinical implications. J Integr Med. 2023; 21(3): 236-244.


Asunto(s)
Cannabidiol , Cannabinoides , Cannabis , Epilepsia , Fármacos Neuroprotectores , Humanos , Cannabidiol/farmacología , Cannabidiol/uso terapéutico , Neuroprotección , Cannabinoides/farmacología , Cannabinoides/uso terapéutico , Epilepsia/tratamiento farmacológico , Fármacos Neuroprotectores/farmacología , Fármacos Neuroprotectores/uso terapéutico
11.
Ther Deliv ; 13(1): 31-49, 2022 01.
Artículo en Inglés | MEDLINE | ID: mdl-34766509

RESUMEN

Drug delivery via the pulmonary route is a cornerstone in the pharmaceutical sector as an alternative to oral and parenteral administration. Nebulizer inhalation treatment offers multiple drug administration, easily employed with tidal breathing, suitable for children and elderly, can be adapted for severe patients and visible spray ensures patient satisfaction. This review discusses the operational and mechanical characteristics of nebulizer delivery devices in terms of aerosol production processes, their usage, benefits and drawbacks that are currently shaping the contemporary landscape of inhaled drug delivery. With the advent of particle engineering, novel inhaled nanosystems can be successfully developed to increase lung deposition and decrease pulmonary clearance. The above-mentioned advances might pave the path for treating a life-threatening disorder like severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) which is also discussed in the current state of the art.


Asunto(s)
COVID-19 , Sistemas de Liberación de Medicamentos , Administración por Inhalación , Aerosoles , Anciano , Broncodilatadores , Niño , Diseño de Equipo , Humanos , Pulmón , Nebulizadores y Vaporizadores , SARS-CoV-2
12.
Nanomedicine (Lond) ; 17(23): 1779-1798, 2022 10.
Artículo en Inglés | MEDLINE | ID: mdl-36636930

RESUMEN

Lung cancer is the second leading cause of cancer-related mortality globally, and non-small-cell lung cancer accounts for most lung cancer cases. Nanotechnology-based drug-delivery systems have exhibited immense potential in lung cancer therapy due to their fascinating physicochemical characteristics, in vivo stability, bioavailability, prolonged and targeted delivery, gastrointestinal absorption and therapeutic efficiency of their numerous chemotherapeutic agents. However, traditional chemotherapeutics have systemic toxicity issues; therefore, dietary polyphenols might potentially replace them in lung cancer treatment. Polyphenol-based targeted nanotherapeutics have demonstrated interaction with a multitude of protein targets and cellular signaling pathways that affect major cellular processes. This review summarizes the various molecular mechanisms and targeted therapeutic potentials of nanoengineered dietary polyphenols in the effective management of lung cancer.


Asunto(s)
Carcinoma de Pulmón de Células no Pequeñas , Carcinoma , Neoplasias Pulmonares , Humanos , Neoplasias Pulmonares/tratamiento farmacológico , Carcinoma de Pulmón de Células no Pequeñas/tratamiento farmacológico , Polifenoles/uso terapéutico , Polifenoles/química , Pulmón , Carcinoma/tratamiento farmacológico
13.
Nanomedicine (Lond) ; 17(23): 1799-1816, 2022 10.
Artículo en Inglés | MEDLINE | ID: mdl-36636965

RESUMEN

Flavonoids represent a major group of polyphenolic compounds. Their capacity to inhibit tumor proliferation, cell cycle, angiogenesis, migration and invasion is substantially responsible for their chemotherapeutic activity against lung cancer. However, their clinical application is limited due to poor aqueous solubility, low permeability and quick blood clearance, which leads to their low bioavailability. Nanoengineered systems such as liposomes, nanoparticles, micelles, dendrimers and nanotubes can considerably enhance the targeted action of the flavonoids with improved efficacy and pharmacokinetic properties, and flavonoids can be successfully translated from bench to bedside through various nanoengineering approaches. This review addresses the therapeutic potential of various flavonoids and highlights the cutting-edge progress in the nanoengineered systems that incorporate flavonoids for treating lung cancer.


Asunto(s)
Neoplasias Pulmonares , Nanopartículas , Neoplasias , Humanos , Sistemas de Liberación de Medicamentos , Polifenoles/uso terapéutico , Neoplasias/tratamiento farmacológico , Liposomas/uso terapéutico , Neoplasias Pulmonares/tratamiento farmacológico , Flavonoides/farmacología , Flavonoides/uso terapéutico
14.
Assay Drug Dev Technol ; 19(8): 484-500, 2021.
Artículo en Inglés | MEDLINE | ID: mdl-34757828

RESUMEN

Microstructure of a semisolid system is greatly influenced by the formulation composition and the processing parameters. Different polymers exhibit different three-dimensional structure and these have a great impact on the drug release properties. The current research focuses on studying the impact of hydroxypropyl cellulose gel microstructure on the release properties of chlorhexidine gluconate (CHX G). The two main investigating methods of microstructure were used namely, rheology and texture analysis to determine the differences in the formulations studied. The CHX G drug release study was performed using a developed and validated in vitro release test method, which is reproducible, discriminative, and robust to detect the formulation differences. The drug release results showed that there was appreciable difference in the release rates of the different formulations. The rheology and texture analysis data correlated well with the difference in the release rates. The formulations differences were further confirmed by a statistical approach using analysis of variance.


Asunto(s)
Celulosa , Celulosa/análogos & derivados , Celulosa/química , Liberación de Fármacos
15.
AAPS PharmSciTech ; 22(5): 182, 2021 Jun 15.
Artículo en Inglés | MEDLINE | ID: mdl-34129146

RESUMEN

The oral bioavailability of curcumin is limited, attributed to its low solubility or dissolution and poor absorption. Herein, the study describes formulation of curcumin-loaded mixed micelles of Gelucire® 48/16 and TPGS for its dissolution rate enhancement. Curcumin was dispersed in these molten lipidic surfactants which was then adsorbed on carrier and formulated as pellets by extrusion spheronization. Critical micelle concentration (CMC) of binary mixture of Gelucire® 48/16 and TPGS was lower than their individual CMC demonstrating the synergistic behavior of mixture. Thermodynamic parameters like partition coefficient and Gibbs free energy of solubilization indicated that mixed micelles were more efficient than micelles of its individual components in curcumin solubilization. Dynamic light scattering (DLS) suggested slight increase in micellar size of mixed micelles than its components suggesting curcumin loading in mixed micelles. Fourier transform infrared spectroscopy (FTIR) revealed that phenolic hydroxyl group interacts with lipids which contribute to its enhanced solubility. Furthermore, the differential scanning calorimetry (DSC) and X-ray diffraction (XRD) study indicated the conversion of crystalline curcumin into amorphous form. In the pellet formulation, Gelucire® 48/16 acted as a binder and eliminated the requirement of additional binder. Microcrystalline cellulose (MCC) forms wet mass and retards the release of curcumin from pellets. Increase in concentration of water-soluble diluent increased drug release. The optimized formulation released more than 90% drug and maintains supersaturation level of curcumin for 2 h. Thus, mixed micellar system was effective delivery system for curcumin while pellet formulation is an interesting formulation strategy consisting semi-solid lipids.


Asunto(s)
Curcumina/síntesis química , Micelas , Polietilenglicoles/síntesis química , Ácidos Polimetacrílicos/síntesis química , Vitamina E/síntesis química , Disponibilidad Biológica , Curcumina/farmacocinética , Portadores de Fármacos/síntesis química , Portadores de Fármacos/farmacocinética , Liberación de Fármacos , Excipientes/síntesis química , Excipientes/farmacocinética , Polietilenglicoles/farmacocinética , Ácidos Polimetacrílicos/farmacocinética , Solubilidad , Vitamina E/farmacocinética , Difracción de Rayos X/métodos
16.
J Pain Palliat Care Pharmacother ; 35(3): 175-214, 2021 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-34157247

RESUMEN

Pain remains a global health challenge affecting approximately 1.5 billion people worldwide. Pain has been an implicit variable in the equation of human life for many centuries considering different types and the magnitude of pain. Therefore, developing an efficacious drug delivery system for pain management remains an open challenge for researchers in the field of medicine. Lack of therapeutic efficacy still persists, despite high throughput studies in the field of pain management. Research scientists have been exploiting different alternatives to curb the adverse side effects of pain medications or attempting a more substantial approach to minimize the prevalence of pain. Various drug delivery systems have been developed such as nanoparticles, microparticles to curb adverse side effects of pain medications or minimize the prevalence of pain. This literature review firstly provides a brief introduction of pain as a sensation and its pharmacological interventions. Second, it highlights the most recent studies in the pharmaceutical field for pain management and serves as a strong base for future developments. Herein, we have classified drug delivery systems based on their sizes such as nano, micro, and macro systems, and for each of the reviewed systems, design, formulation strategies, and drug release performance has been discussed.


Asunto(s)
Manejo del Dolor , Preparaciones Farmacéuticas , Sistemas de Liberación de Medicamentos , Humanos , Dolor/tratamiento farmacológico
17.
AAPS PharmSciTech ; 22(5): 156, 2021 May 18.
Artículo en Inglés | MEDLINE | ID: mdl-34008083

RESUMEN

Probiotics have gained a lot of interest in recent years as an alternative as well as adjuvant therapy for several conditions owing to their health benefits. These live microorganisms have proven efficacy for treating gut disorders, inflammation, bacterial vaginosis, hepatic and depressive disorders, and many more. There are conventional as well as non-conventional formulations available for the delivery of probiotics with the latter having fewer regulatory guidelines. The conventional formulations include the pharmaceutical formulations specifically designed to deliver an efficacious number of viable microorganisms. Studies have indicated 108-109 CFU/g as an ideal dose of probiotics for achieving health benefits, and hence, all the formulations must at least contain the said number of viable bacteria to show a therapeutic effect. The most crucial feature of probiotic formulations is that the bacteria are prone to several environmental and processing factors which all together reduce the viability of the bacteria in the final formulation. These factors include processing parameters like temperature, humidity, pressure, and storage conditions. Thus, the present review primarily focuses on the critical process parameters affecting the probiotic viability during stabilization process and formulation development. Understanding these factors prior to processing helps in delivering probiotics in the required therapeutic numbers at the target site.


Asunto(s)
Fenómenos Fisiológicos Bacterianos , Microbioma Gastrointestinal/fisiología , Viabilidad Microbiana , Probióticos/administración & dosificación , Probióticos/síntesis química , Animales , Humanos , Estabilidad Proteica
18.
Spectrochim Acta A Mol Biomol Spectrosc ; 255: 119682, 2021 Jul 05.
Artículo en Inglés | MEDLINE | ID: mdl-33770736

RESUMEN

Dorzolamide hydrochloride and timolol maleate is a well-established fixed-dose combination for the treatment of glaucoma worldwide. The utilization of simulated biological fluids can give a superior understanding of the release mechanisms and practicable in vivo nature of a dosage form that can improve the predictive potential of in vitro drug release testing. No method has been reported so far for the simultaneous estimation of dorzolamide and timolol in simulated tear fluid. In the present study, a simple, precise, and accurate first-order derivative ultraviolet spectrophotometric method for the routine analysis of dorzolamide and timolol in simulated tear fluid is proposed for in vitro drug release testing. The developed method was validated as per International Conference on Harmonization guidelines Q2 (R1). First-order derivative UV spectrophotometry was successfully applied to separate the overlapping peaks of dorzolamide and timolol by measuring peak amplitude at 251.80 nm and absorbance at 295.00 nm, respectively. The method was found to be accurate and precise, with a recovery range of 98.0 -101.0% and low relative standard deviations (<2.0%). The developed method was successfully applied for in vitro drug release testing of in-house in situ gel and marketed eye drops containing dorzolamide and timolol. Various mathematical models were adopted to fit the in vitro drug release profile. It was observed that the drug release of both drugs from the in situ gel and the marketed solution were best fitted by the Higuchi and first-order kinetic models, respectively. Moreover, the analysis of variance (ANOVA) provision was used for the validation of results. Overall, with the advantages of simple and fast operations, as well as reliability, the proposed method offers an ideal platform for routine analysis as compared to other high-cost and time-consuming chromatographic techniques. Having access to such a robust method will encourage the use of simulated tear fluid for in vitro drug release testing of ocular products and help to predict the in vivo performances of ophthalmic preparations.


Asunto(s)
Tiofenos , Timolol , Antihipertensivos , Combinación de Medicamentos , Liberación de Fármacos , Soluciones Oftálmicas , Reproducibilidad de los Resultados , Sulfonamidas
19.
Int J Pharm ; 583: 119363, 2020 Jun 15.
Artículo en Inglés | MEDLINE | ID: mdl-32334068

RESUMEN

Amorphous ternary solid dispersions of poorly water-soluble Naringenin (NRG) in Poloxamer 188 (POX) and Neusilin US2 (NSL) were prepared in a Hot- Melt Extruder (HME) using the principle of Low-Temperature Solubilization (LTS). Before HME, the NRG-POX solid-state interaction was investigated using Flory Huggins (F-H) theory. Construction of the composition-phase diagram showed Gibbs free energy to be negative close to the melting temperature of NRG, indicating a miscible system. The temperature-composition phase diagram provided insights on the phase behavior of the active-polymer solid dispersion system. The interactions and phase behavior predicted within the framework of the F-H theory were further investigated using Differential Scanning Calorimetry (DSC), X-Ray Diffraction (XRD), Hot Stage Microscopy (HSM) and Fourier-transform infrared spectroscopy (FT-IR). Based on the findings, amorphous solid dispersions of NRG were prepared via HME, which demonstrated a significant increase in the dissolution rate (p ≤ 0.05). The enhancement of the dissolution rate is due to conversion from crystalline to amorphous form, as confirmed by DSC and XRD. The amorphous NRG prepared in the current study exhibited a release of 77% at the end of 2 h, which is an increment of 250% from that of pure crystals.


Asunto(s)
Flavanonas/química , Rastreo Diferencial de Calorimetría , Cromatografía Líquida de Alta Presión , Composición de Medicamentos , Liberación de Fármacos , Poloxámero/química , Solubilidad , Espectroscopía Infrarroja por Transformada de Fourier , Termodinámica , Difracción de Rayos X
20.
Mater Sci Eng C Mater Biol Appl ; 99: 563-574, 2019 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-30889730

RESUMEN

The present study explores the effect of melt binding of Soluplus® on in vitro release profiles of two hydrophilic drugs, metformin hydrochloride, and paracetamol. The melt viscosities of bulk polymer and physical mixtures with different concentrations of selected APIs were analyzed by using a rheometer. The rheological evaluation revealed both the suitable temperature range for melt extrusion process and drug-polymer extrudability. The effect of formulation and processing parameters (e.g. polymer/drug ratio, temperature, screw speed) on extrudability were evaluated in terms of torque and residence time analysis. The extrudates obtained via hot melt extrusion (HME) processing exhibited good flow and compressibility. Differential scanning calorimetry (DSC) and X-ray diffraction studies examined the change in glass transition temperature (Tg) and crystalline pattern of extruded formulations where all extruded formulations seemed to have retained their crystallinity. The thermogravimetric analysis determined the thermal stability (weight loss) as a function of operating temperature whereas scanning electron microscopy (SEM) showed agglomerated microstructure and rough surface with a porous network and void spaces. The tablets obtained after compression of milled extrudates showed excellent hardness with robust tablet characteristics. The in vitro release studies of individual batches performed in various USP recommended dissolution media (for paracetamol) showed the pH-independent release of the hydrophilic drugs from the polymer matrices.


Asunto(s)
Liberación de Fármacos , Interacciones Hidrofóbicas e Hidrofílicas , Polietilenglicoles/química , Polivinilos/química , Rastreo Diferencial de Calorimetría , Relación Dosis-Respuesta a Droga , Tamaño de la Partícula , Reología , Espectroscopía Infrarroja por Transformada de Fourier , Temperatura , Termogravimetría , Difracción de Rayos X
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...