Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Mol Neurobiol ; 2023 Nov 24.
Artículo en Inglés | MEDLINE | ID: mdl-37996730

RESUMEN

Krüppel-like factor 4 (KLF4), a zinc finger transcription factor, is found in different human tissues and shows diverse regulatory activities in a cell-dependent manner. In the brain, KLF4 controls various neurophysiological and neuropathological processes, and its contribution to various neurological diseases has been widely reported. Parkinson's disease (PD) is an age-related neurodegenerative disease that might have a connection with KLF4. In this review, we discussed the potential implication of KLF4 in fundamental molecular mechanisms of PD, including aberrant proteostasis, neuroinflammation, apoptosis, oxidative stress, and iron overload. The evidence collected herein sheds new light on KLF4-mediated pathways, which manipulation appears to be a promising therapeutic target for PD management. However, there is a gap in the knowledge on this topic, and extended research is required to understand the translational value of the KLF4-oriented therapeutical approach in PD.

2.
Heliyon ; 9(6): e17376, 2023 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-37484358

RESUMEN

In July 2022, a new virus called Langya virus (LayV) was discovered in China in patients who had a fever. This virus is a type of Henipavirus (HNV) and is considered a potential threat as it could spread from animals to humans. It causes respiratory disease with symptoms including fever, coughing, and fatigue and is closely linked to two other henipaviruses that are known to infect humans, namely Hendra and Nipah viruses. These viruses may cause fatal respiratory illnesses. Investigators believe that the LayV is spread by shrews, and may have infected humans directly or via an intermediary species. Thus, the use of vaccines or immunizations against LayV is an alternate strategy for disease prevention. In this study, we employed various immunoinformatics methods to predict B cell, HTL and T cell epitopes from the LayV proteome in order to find the most promising candidate for a LayV vaccine. The most potent epitopes that are immunogenic and non-allergenic were joined with each other through suitable linkers. Human ß-defensin 2 was employed as an adjuvant to increase the immunogenicity of the vaccine construct. The final sequence of a multi-epitope vaccine construct was modelled for docking with TLRs. Concisely, our results suggest that the docked complexes of vaccine-TLRs seemed to be stable. Additionally, in silico cloning was done using E. coli as the host in order to validate the expression of our designed vaccine construct. The GC content of 54.39% and CAI value of 0.94 revealed that the vaccine component expresses efficiently in the host. This study presents the novel vaccine construct for LayV which will be essential for further experimental validations to confirm the immunogenicity and safety of the proposed vaccine structure, and eventually to treat HNV-related diseases.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...