Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
J Clin Invest ; 134(8)2024 Feb 20.
Artículo en Inglés | MEDLINE | ID: mdl-38376944

RESUMEN

While therapies targeting CD19 by antibodies, chimeric antigen receptor T cells (CAR-T), and T cell engagers have improved the response rates in B cell malignancies, the emergence of resistant cell populations with low CD19 expression can lead to relapsed disease. We developed an in vitro model of adaptive resistance facilitated by chronic exposure of leukemia cells to a CD19 immunotoxin. Single-cell RNA-Seq (scRNA-Seq) showed an increase in transcriptionally distinct CD19lo populations among resistant cells. Mass cytometry demonstrated that CD22 was also decreased in these CD19lo-resistant cells. An assay for transposase-accessible chromatin with sequencing (ATAC-Seq) showed decreased chromatin accessibility at promoters of both CD19 and CD22 in the resistant cell populations. Combined loss of both CD19 and CD22 antigens was validated in samples from pediatric and young adult patients with B cell acute lymphoblastic leukemia (B-ALL) that relapsed after CD19 CAR-T-targeted therapy. Functionally, resistant cells were characterized by slower growth and lower basal levels of MEK activation. CD19lo resistant cells exhibited preserved B cell receptor signaling and were more sensitive to both Bruton's tyrosine kinase (BTK) and MEK inhibition. These data demonstrate that resistance to CD19 immunotherapies can result in decreased expression of both CD19 and CD22 and can result in dependency on BTK pathways.


Asunto(s)
Antígenos CD19 , Leucemia-Linfoma Linfoblástico de Células Precursoras , Lectina 2 Similar a Ig de Unión al Ácido Siálico , Niño , Humanos , Adulto Joven , Agammaglobulinemia Tirosina Quinasa , Antígenos CD19/genética , Cromatina , Inmunoterapia Adoptiva , Quinasas de Proteína Quinasa Activadas por Mitógenos , Leucemia-Linfoma Linfoblástico de Células Precursoras/genética , Leucemia-Linfoma Linfoblástico de Células Precursoras/terapia , Receptores Quiméricos de Antígenos , Lectina 2 Similar a Ig de Unión al Ácido Siálico/genética
2.
Elife ; 112022 08 30.
Artículo en Inglés | MEDLINE | ID: mdl-36040792

RESUMEN

Background: Mutations in the SF3B1 splicing factor are commonly seen in myelodysplastic syndromes (MDS) and acute myeloid leukemia (AML), yet the specific oncogenic pathways activated by mis-splicing have not been fully elucidated. Inflammatory immune pathways have been shown to play roles in the pathogenesis of MDS, though the exact mechanisms of their activation in splicing mutant cases are not well understood. Methods: RNA-seq data from SF3B1 mutant samples was analyzed and functional roles of interleukin-1 receptor-associated kinase 4 (IRAK4) isoforms were determined. Efficacy of IRAK4 inhibition was evaluated in preclinical models of MDS/AML. Results: RNA-seq splicing analysis of SF3B1 mutant MDS samples revealed retention of full-length exon 6 of IRAK4, a critical downstream mediator that links the Myddosome to inflammatory NF-kB activation. Exon 6 retention leads to a longer isoform, encoding a protein (IRAK4-long) that contains the entire death domain and kinase domain, leading to maximal activation of NF-kB. Cells with wild-type SF3B1 contain smaller IRAK4 isoforms that are targeted for proteasomal degradation. Expression of IRAK4-long in SF3B1 mutant cells induces TRAF6 activation leading to K63-linked ubiquitination of CDK2, associated with a block in hematopoietic differentiation. Inhibition of IRAK4 with CA-4948, leads to reduction in NF-kB activation, inflammatory cytokine production, enhanced myeloid differentiation in vitro and reduced leukemic growth in xenograft models. Conclusions: SF3B1 mutation leads to expression of a therapeutically targetable, longer, oncogenic IRAK4 isoform in AML/MDS models. Funding: This work was supported by Cincinnati Children's Hospital Research Foundation, Leukemia Lymphoma Society, and National Institute of Health (R35HL135787, RO1HL111103, RO1DK102759, RO1HL114582), Gabrielle's Angel Foundation for Cancer Research, and Edward P. Evans Foundation grants to DTS. AV is supported by Edward P. Evans Foundation, National Institute of Health (R01HL150832, R01HL139487, R01CA275007), Leukemia and Lymphoma Society, Curis and a gift from the Jane and Myles P. Dempsey family. AP and JB are supported by Blood Cancer UK (grants 13042 and 19004). GC is supported by a training grant from NYSTEM. We acknowledge support of this research from The Einstein Training Program in Stem Cell Research from the Empire State Stem Cell Fund through New York State Department of Health Contract C34874GG. MS is supported by a National Institute of Health Research Training and Career Development Grant (F31HL132420).


Genes contain blocks of code that tell cells how to make each part of a protein. Between these blocks are sections of linking DNA, which cells remove when they are preparing to use their genes. Scientists call this process 'splicing'. Cells can splice some genes in more than one way, allowing them to make different proteins from the same genetic code. Mutations that affect the splicing process can change the way cells make their proteins, leading to disease. For example, the myelodysplastic syndromes are a group of blood cancers often caused by mutations in splicing proteins, such as SF3B1. The disorder stops blood cells from maturing and causes abnormal inflammation. So far, the link between splicing, blood cell immaturity, inflammation and cancer is not clear. To find out more, Choudhary, Pellagatti et al. looked at the spliced genetic code from people with myelodysplastic syndromes. Mutations in the splicing protein SF3B1 changed the way cells spliced an important signalling molecule known as IRAK4. Affected cells cut out less genetic code and made a longer version of this signalling protein, named IRAK4-Long. This altered protein activated inflammation and stopped blood cells from maturing. Blocking IRAK4-Long reversed the effects. It also reduced tumour formation in mice carrying affected human cells. The molecule used to block IRAK4, CA-4948 ­ also known as Emavusertib ­ is currently being evaluated in clinical trials for myelodysplastic syndromes and other types of blood cancer. The work of Choudhary, Pellagatti et al. could help scientists to design genetic tests to predict which patients might benefit from this treatment.


Asunto(s)
Leucemia Mieloide Aguda , Síndromes Mielodisplásicos , Fosfoproteínas/metabolismo , Factores de Empalme de ARN/metabolismo , Niño , Humanos , Quinasas Asociadas a Receptores de Interleucina-1/genética , Quinasas Asociadas a Receptores de Interleucina-1/metabolismo , Leucemia Mieloide Aguda/genética , Leucemia Mieloide Aguda/patología , Mutación , Síndromes Mielodisplásicos/metabolismo , FN-kappa B/genética , FN-kappa B/metabolismo , Isoformas de Proteínas/metabolismo , Empalme del ARN
3.
FASEB J ; 33(8): 9516-9525, 2019 08.
Artículo en Inglés | MEDLINE | ID: mdl-31125254

RESUMEN

Influenza virus causes infected cells to generate large numbers of lipid droplets. Because the virus envelope contains substantial cholesterol, we applied atorvastatin (ATV) to Madin-Darby Canine Kidney cells before infecting them. Five micromolars ATV, within physiologic range, strongly (>95%) inhibits reproduction of influenza A as measured by PCR of viral RNA, plaque assay for viable virus, and production of virus nucleoprotein (NP). Inhibition of any of the following can suppress formation of lipid droplets (>-50%) but does not interfere with the production of NP: endoplasmic reticulum stress, autophagy, or production of reactive oxygen substances (ROS). We conclude that, regardless of whether this widely used statin, which is generally considered to be safe, can prevent infection or minimize its severity, inhibition of the 3-hydroxy-3-methylglutaryl-coenzyme A reductase pathway to protect against infection by influenza virus or to mitigate its severity warrants further exploration.-Episcopio, D., Aminov, S., Benjamin, S., Germain, G., Datan, E., Landazuri, J., Lockshin, R. A., Zakeri, Z. Atorvastatin restricts the ability of influenza virus to generate lipid droplets and severely suppresses the replication of the virus.


Asunto(s)
Antivirales/farmacología , Atorvastatina/farmacología , Replicación Viral/efectos de los fármacos , Animales , Autofagia/efectos de los fármacos , Línea Celular , Perros , Estrés del Retículo Endoplásmico/efectos de los fármacos , Gotas Lipídicas/metabolismo , Células de Riñón Canino Madin Darby , Especies Reactivas de Oxígeno/metabolismo
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...