Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 1 de 1
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
J Control Release ; 329: 907-918, 2021 01 10.
Artículo en Inglés | MEDLINE | ID: mdl-33068646

RESUMEN

Acetyl-hexapeptide 3 (AHP-3) has good efficacy and safety profile as an anti-wrinkle small peptide. However, its skin permeation is poor due to its hydrophilicity and large molecular weight. 3D printing of personalised microneedles (MN), that contour to the skin surface, offers an attractive alternative for delivery for AHP-3. However, commercially available photocurable resin for 3D printing are not suitable for fabrication of drug loaded delivery systems. In this study, two liquid monomers, namely, polyethylene glycol diacrylate (PEGDA) and vinyl pyrrolidone (VP), were investigated at various proportions, for critical parameters such as mechanical strength of final polymer, rate of polymerisation, rate of swelling of final polymer, 3D printing resolution and safety profile of final polymer. The optimal resin, based on the above parameters, was that of ratio 7 VP: 3 PEGDA in weight. Drug loading into the optimal resin demonstrated that AHP-3 remained stable throughout the fabrication process and there was no effect on the physical properties of final polymer. Using a 3D scanned face model, a personalised MN patch was designed using computer aided design (CAD) software and subsequently fabricated using a Digital Light Processing (DLP) 3D printer, with the optimal resin. In vitro characterisation of fabricated MN patch demonstrated the ability to penetrate human cadaver dermatomed skin and the MN remained intact after compression. The final polymer also had minimal cytotoxicity to human dermal fibroblast. Therefore, personalised MN patch fabricated using the photopolymer can potentially be a novel approach to augment transdermal delivery of AHP-3 for effective wrinkle management.


Asunto(s)
Agujas , Impresión Tridimensional , Administración Cutánea , Sistemas de Liberación de Medicamentos , Humanos , Péptidos , Absorción Cutánea
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...