Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 7 de 7
Filtrar
Más filtros










Intervalo de año de publicación
1.
Int. microbiol ; 27(2): 393-409, Abr. 2024.
Artículo en Inglés | IBECS | ID: ibc-232288

RESUMEN

Clostridioides difficile infection (CDI) is the leading cause of healthcare-acquired infections worldwide. Probiotics are widely recommended to prevent CDI and its recurrences. Akkermansia muciniphila, as a therapeutic symbiont colonizing the intestinal mucosal layer, is considered to be a promising next-generation probiotic. In this work, we assessed the inhibitory effects of A. muciniphila MucT and its derivatives on cytotoxicity and inflammatory response induced by C. difficile RT001 in Caco-2 cells. The results obtained from SEM revealed that the morphology of UV-killed A. muciniphila remained unchanged after UV inactivation. TEM analysis showed that A. muciniphila–isolated extracellular vesicles (EVs) were spherical and ranged from 50 to 200 nm in size. Toxigenic supernatant (Tox-S) of C. difficile RT001 (500 μg/ml) significantly (P <0.01) reduced the cell viability of Caco-2 cells. Caco-2 cells treated with live (MOI 10), UV-killed (MOI 10), cell-free supernatant (CFS, 106 cfu/ml), and EVs (20 μg/ml) of A. muciniphila exhibited over 90% viability in comparison to untreated control. The neutralized CFS preparation using A. muciniphila and its derivatives could notably reduce the expression level of inflammatory markers. Additionally, A. muciniphila and its derivatives modulated the production of IL-1β, TNF-α, and IL-10 in Tox-S stimulated Caco-2 cells. We demonstrated that A. muciniphila and its derivatives can modulate changes in the gut barrier–related genes and inflammatory response caused by C. difficile Tox-S in Caco-2 cells. (AU)


Asunto(s)
Humanos , Infecciones por Clostridium , Probióticos , Mucosa Intestinal , Citotoxicidad Inmunológica
2.
Int Microbiol ; 27(2): 393-409, 2024 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-37479958

RESUMEN

Clostridioides difficile infection (CDI) is the leading cause of healthcare-acquired infections worldwide. Probiotics are widely recommended to prevent CDI and its recurrences. Akkermansia muciniphila, as a therapeutic symbiont colonizing the intestinal mucosal layer, is considered to be a promising next-generation probiotic. In this work, we assessed the inhibitory effects of A. muciniphila MucT and its derivatives on cytotoxicity and inflammatory response induced by C. difficile RT001 in Caco-2 cells. The results obtained from SEM revealed that the morphology of UV-killed A. muciniphila remained unchanged after UV inactivation. TEM analysis showed that A. muciniphila-isolated extracellular vesicles (EVs) were spherical and ranged from 50 to 200 nm in size. Toxigenic supernatant (Tox-S) of C. difficile RT001 (500 µg/ml) significantly (P <0.01) reduced the cell viability of Caco-2 cells. Caco-2 cells treated with live (MOI 10), UV-killed (MOI 10), cell-free supernatant (CFS, 106 cfu/ml), and EVs (20 µg/ml) of A. muciniphila exhibited over 90% viability in comparison to untreated control. The neutralized CFS preparation using A. muciniphila and its derivatives could notably reduce the expression level of inflammatory markers. Additionally, A. muciniphila and its derivatives modulated the production of IL-1ß, TNF-α, and IL-10 in Tox-S stimulated Caco-2 cells. We demonstrated that A. muciniphila and its derivatives can modulate changes in the gut barrier-related genes and inflammatory response caused by C. difficile Tox-S in Caco-2 cells.


Asunto(s)
Clostridioides difficile , Ácidos Linoleicos , Humanos , Células CACO-2 , Akkermansia
3.
Microb Pathog ; 185: 106450, 2023 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-37979713

RESUMEN

Autophagy is a homeostatic process that can promote cell survival or death. However, the exact role of autophagy in Clostridioides difficile infection (CDI) is still not precisely elucidated. Here, we investigate the role of distinct C. difficile ribotypes (RTs) in autophagy induction using Caco-2 cells. The expression analysis of autophagy-associated genes and related miRNAs were examined following treatment of Caco-2 cells with C. difficile after 4 and 8 h using RT-qPCR. Toxin production was assessed using enzyme-linked immunosorbent assay (ELISA). Immunofluorescence analysis was performed to detect MAP1LC3B/LC3B, followed by an autophagic flux analysis. C. difficile significantly reduced the viability of Caco-2 cells in comparison with untreated cells. Elevated levels of LC3-II and SQSTM1/p62 by C. difficile RT001 and RT084 in the presence of E64d/leupeptin confirmed the induction of autophagy activity. Similarly, the immunofluorescence analysis demonstrated that C. difficile RT001 and RT084 significantly increased the amount of LC3-positive structures in Caco-2 cells. The induction of autophagy was further demonstrated by increased levels of LC3B, ULK1, ATG12, PIK3C3/VPS34, BECN1 (beclin 1), ATG5, and ATG16L1 transcripts and reduced levels of AKT and MTOR gene expression. The expression levels of MIR21 and MIR30B, microRNAs that suppress autophagy, were differentially affected by C. difficile. In conclusion, the present work revealed that C. difficile bacteria can induce autophagy through both toxin-dependent and -independent mechanisms. Also, our results suggest the potential role of other C. difficile virulence factors in autophagy modulation using intestinal cells in vitro.


Asunto(s)
Clostridioides difficile , Humanos , Células CACO-2 , Clostridioides difficile/genética , Clostridioides , Ribotipificación , Autofagia , Reacción en Cadena de la Polimerasa
4.
Microb Pathog ; 169: 105681, 2022 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-35850375

RESUMEN

Clostridioides difficile is the leading cause of nosocomial diarrhea with high morbidity and mortality worldwide. C. difficile strains produce a crystalline surface layer protein A (SlpA), which is an absolute necessity for its pathogenesis. However, its pathogenic mechanisms and its pro-inflammatory behavior are not yet fully elucidated. Herein, we report for the first time that SlpA extracted from C. difficile can induce autophagy process in Caco-2 cells. SlpA protein was purified from two C. difficile strains (RT001 and ATCC 700075). The cell viability of Caco-2 cells after exposure with different concentrations (15, 20, 25 µg/mL) of SlpA at various time points (3, 6, 12, 24 h) was measured by MTT assay. Acridine orange staining was used to visualize the hypothetical acidic vesicular organelles. The gene expression of autophagy mediators including LC3B, Atg5, Atg16L, and Beclin-1 was determined by quantitative real-time PCR assay. Western blotting assay was used to detect the expression of LC3B protein. MTT assay showed that different concentrations of SlpA did not induce significant changes in the viability of Caco-2 cells. SlpA at concentration of 20 µg/mL enhanced the formation of acidic vesicular organelles in Caco-2 cells after 12 h of exposure. Moreover, SlpA treatment significantly increased the expression of autophagy-associated genes, and increased the expression of LC3B protein in Caco-2 cells. In conclusion, our study demonstrated that SlpA is capable to induce autophagy in intestinal epithelial cells. These findings reveal a novel mechanism for the pathogenesis of C. difficile mediated by its SLPs.


Asunto(s)
Clostridioides difficile , Autofagia , Proteínas Bacterianas/metabolismo , Células CACO-2 , Clostridioides difficile/clasificación , Clostridioides difficile/genética , Células Epiteliales/metabolismo , Humanos , Ribotipificación
5.
Rev Soc Bras Med Trop ; 50(3): 315-320, 2017.
Artículo en Inglés | MEDLINE | ID: mdl-28700048

RESUMEN

INTRODUCTION:: Pseudomonas aeruginosa is one of the most common nosocomial pathogens. The emergence of extended spectrum ß-lactamases (ESBLs) has been increasingly reported as a major clinical concern worldwide. The main aim of the present study was to determine the distribution of bla OXA, bla PER-1, bla VEB-1, and bla GES-1 genes among ESBL-producing P. aeruginosa isolated from two distinct provinces in Iran. METHODS:: In this study, a total of 75 (27.5%) ESBL-producing isolates were identified from 273 P. aeruginosa isolates collected from patients in Qazvin and Tehran. Phenotypic detection of ESBLs and antimicrobial susceptibility testing were performed according to the Clinical and Laboratory Standards Institute guidelines. PCR and sequencing were employed to detect bla OXA-1, bla OXA, bla GES-1, bla PER-1, and bla VEB-1 genes. Isolate genetic relationships were evaluated by repetitive extragenic palindromic sequence-based PCR (REP-PCR). RESULTS:: In total, 59 (78.7%) of the ESBL-producing isolates showed multidrug resistance. The highest rates of susceptibility were observed against colistin (75 isolates, 100%) and polymyxin B (75, 100%) followed by amikacin (44, 58.7%), and piperacillin-tazobactam (40, 53.3%). The bla OXA-1 (37.3%) gene was the most common of the genes investigated, followed by bla OXA-4 (32%), bla GES-1 (16%), and bla VEB-1 (13.3%). REP-PCR identified three different genotypes: types A (89.3%), B (6.7%), and C (4%). CONCLUSIONS:: We found a significant presence of bla OXA-1, bla OXA-4, bla GES-1, and bla VEB-1 genes among P. aeruginosa isolates, highlighting the need for suitable infection control strategies to effectively treat patients and prevent the further distribution of these resistant organisms.


Asunto(s)
Antibacterianos/farmacología , Farmacorresistencia Bacteriana Múltiple/genética , Pseudomonas aeruginosa/genética , beta-Lactamasas/genética , Proteínas de Escherichia coli/genética , Femenino , Genes Bacterianos , Genotipo , Humanos , Irán , Masculino , Pruebas de Sensibilidad Microbiana , Reacción en Cadena de la Polimerasa , Pseudomonas aeruginosa/efectos de los fármacos , Pseudomonas aeruginosa/enzimología
6.
Rev. Soc. Bras. Med. Trop ; 50(3): 315-320, May-June 2017. tab
Artículo en Inglés | LILACS | ID: biblio-896964

RESUMEN

Abstract INTRODUCTION: Pseudomonas aeruginosa is one of the most common nosocomial pathogens. The emergence of extended spectrum β-lactamases (ESBLs) has been increasingly reported as a major clinical concern worldwide. The main aim of the present study was to determine the distribution of bla OXA, bla PER-1, bla VEB-1, and bla GES-1 genes among ESBL-producing P. aeruginosa isolated from two distinct provinces in Iran. METHODS: In this study, a total of 75 (27.5%) ESBL-producing isolates were identified from 273 P. aeruginosa isolates collected from patients in Qazvin and Tehran. Phenotypic detection of ESBLs and antimicrobial susceptibility testing were performed according to the Clinical and Laboratory Standards Institute guidelines. PCR and sequencing were employed to detect bla OXA-1, bla OXA, bla GES-1, bla PER-1, and bla VEB-1 genes. Isolate genetic relationships were evaluated by repetitive extragenic palindromic sequence-based PCR (REP-PCR). RESULTS: In total, 59 (78.7%) of the ESBL-producing isolates showed multidrug resistance. The highest rates of susceptibility were observed against colistin (75 isolates, 100%) and polymyxin B (75, 100%) followed by amikacin (44, 58.7%), and piperacillin-tazobactam (40, 53.3%). The bla OXA-1 (37.3%) gene was the most common of the genes investigated, followed by bla OXA-4 (32%), bla GES-1 (16%), and bla VEB-1 (13.3%). REP-PCR identified three different genotypes: types A (89.3%), B (6.7%), and C (4%). CONCLUSIONS: We found a significant presence of bla OXA-1, bla OXA-4, bla GES-1, and bla VEB-1 genes among P. aeruginosa isolates, highlighting the need for suitable infection control strategies to effectively treat patients and prevent the further distribution of these resistant organisms.


Asunto(s)
Humanos , Masculino , Femenino , Pseudomonas aeruginosa/genética , beta-Lactamasas/genética , Farmacorresistencia Bacteriana Múltiple/genética , Antibacterianos/farmacología , Pseudomonas aeruginosa/efectos de los fármacos , Pseudomonas aeruginosa/enzimología , Pruebas de Sensibilidad Microbiana , Reacción en Cadena de la Polimerasa , Proteínas de Escherichia coli/genética , Genes Bacterianos , Genotipo , Irán
7.
Lasers Med Sci ; 31(6): 1211-7, 2016 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-27250714

RESUMEN

The purpose of the present study was to assess the effects of low-level laser therapy (LLLT) on skeletal muscle ischemia-reperfusion (IR) injuries in streptozotocin-induced diabetic rats. Twenty male Wistar rats were randomly assigned into two experimental groups, as follows: the diabetic IR group (G1, n = 10) and the diabetic IR + LLLT group (G2, n = 10). Ischemia was induced in anesthetized rats from the right femoral artery clipping for 2 h, followed by a reperfusion for 24 h. Then, the laser irradiation (K30 handheld probe, AZOR, Technica, Russia, 650 nm, 30 mW, surface area = 1 cm(2), energy density = 1.8 J/cm(2)) was carried out by irradiating the rats over a unique point on the skin over the middle region of the right gastrocnemius muscle belly three times (every 8 h), starting after initiating the reperfusion for 3 min. At the end of the reperfusion period, rats were anaesthetized and blood samples were collected and used for the estimation of pO2, pCO2, pH, HCO3, serum creatine phosphokinase (CPK), and lactate dehydrogenase (LDH). Subsequently, the right gastrocnemius muscle samples were taken for wet/dry weight ratio assessment and histological/biochemical examination. The pO2, pCO2, HCO3, and pH levels were similar for both groups (P > 0.05). The serum LDH and CPK levels were significantly lower (P < 0.05) for G2 compared to G1. In comparison to G1, tissue malondialdehyde level in G2 was significantly decreased (P < 0.05). In G2, superoxide dismutase activity was significantly increased compared to G1 (P < 0.05). Unlike G2, a significant decrease in the activity of catalase was observed in G1 (P < 0.05). The wet/dry ratio in G1 was significantly higher than that of G2 (P < 0.05). Histological examination confirmed that the extent of muscle changes in G1 was higher than G2 (P < 0.05). Finally, according to this study, LLLT has a beneficial effect on the IR muscle injury treatment in the diabetic rats. Therefore, we suggest that further research needs to be conducted using different laser parameters and examining response over a longer period of tissue recovery.


Asunto(s)
Diabetes Mellitus Experimental/patología , Terapia por Luz de Baja Intensidad/métodos , Músculo Esquelético/efectos de la radiación , Daño por Reperfusión/patología , Daño por Reperfusión/radioterapia , Animales , Biomarcadores , Catalasa/sangre , L-Lactato Deshidrogenasa/sangre , Masculino , Malondialdehído/sangre , Ratas , Ratas Wistar , Estreptozocina
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA