Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 22
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Nanotheranostics ; 8(1): 100-111, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-38164502

RESUMEN

Background: Phthalocyanine (PC) and naphthalocyanine (NC) dyes have long garnered interest as theranostic agents for optical imaging and phototherapy due to their near-infrared absorbance, photostability, imaging contrast, and proven safety in clinical trials. Yet, only a small fraction of these dyes has been evaluated as photothermal therapy (PTT) agents for cancer treatment. Methods: Nearly 40 distinct NC and PC dyes were encapsulated within polymeric PEG-PCL micelles via oil-in-water emulsions. The optimal NC/PC-loaded micelle formulations for PTT and photoacoustic (PA) imaging were identified through in vivo and in vitro studies. Results: The most promising candidate, CuNC(Octa)-loaded micelles, demonstrated a strong PA signal with a peak absorbance at ~870 nm, high photothermal efficiency, and photostability. The CuNC(Octa)-loaded micelles exhibited heat generation as good or better than gold nanorods/nanoshells and >10-fold higher photoacoustic signals. Micelle preparation was reproducible/scalable, and the CuNC(Octa)-loaded micelles are highly stable under physiological conditions. The CuNC(Octa)-loaded micelles localize within tumors via enhanced permeability and retention and are readily detectable by PA imaging. In a syngeneic murine tumor model of triple-negative breast cancer, CuNC(Octa)-loaded micelles demonstrate efficient heat generation with PTT, leading to the complete eradication of tumors. Conclusions: CuNC(Octa)-loaded micelles represent a promising theranostic agent for PA imaging and PTT. The ability to utilize conventional ultrasound in combination with PA imaging enables the simultaneous acquisition of information about tumor morphology and micelle accumulation. PTT with CuNC(Octa)-loaded micelles can lead to the complete eradication of highly invasive tumors.


Asunto(s)
Nanopartículas , Neoplasias , Técnicas Fotoacústicas , Animales , Ratones , Micelas , Terapia Fototérmica , Medicina de Precisión , Técnicas Fotoacústicas/métodos , Nanopartículas/uso terapéutico , Indoles , Colorantes/uso terapéutico , Neoplasias/terapia , Neoplasias/tratamiento farmacológico
2.
Adv Healthc Mater ; 13(8): e2303018, 2024 03.
Artículo en Inglés | MEDLINE | ID: mdl-38117252

RESUMEN

Silver sulfide nanoparticles (Ag2S-NP) hold promise for various optical-based biomedical applications, such as near-infrared fluorescence (NIRF) imaging, photoacoustics (PA), and photothermal therapy (PTT). However, their NIR absorbance is relatively low, and previous formulations are synthesized using toxic precursors under harsh conditions and are not effectively cleared due to their large size. Herein, sub-5 nm Ag2S-NP are synthesized and encapsulated in biodegradable, polymeric nanoparticles (AgPCPP). All syntheses are conducted using biocompatible, aqueous reagents under ambient conditions. The encapsulation of Ag2S-NP in polymeric nanospheres greatly increases their NIR absorbance, resulting in enhanced optical imaging and PTT effects. AgPCPP nanoparticles exhibit potent contrast properties suitable for PA and NIRF imaging, as well as for computed tomography (CT). Furthermore, AgPCPP nanoparticles readily improve the conspicuity of breast tumors in vivo. Under NIR laser irradiation, AgPCPP nanoparticles significantly reduce breast tumor growth, leading to prolonged survival compared to free Ag2S-NP. Over time, AgPCPP retention in tissues gradually decreases, without any signs of acute toxicity, providing strong evidence of their safety and biodegradability. Therefore, AgPCPP may serve as a "one-for-all" theranostic agent that degrades into small components for excretion after fulfilling diagnostic and therapeutic tasks, offering good prospects for clinical translation.


Asunto(s)
Neoplasias de la Mama , Nanopartículas , Humanos , Femenino , Neoplasias de la Mama/terapia , Fototerapia/métodos , Línea Celular Tumoral , Nanomedicina Teranóstica/métodos , Polímeros
3.
bioRxiv ; 2023 Nov 28.
Artículo en Inglés | MEDLINE | ID: mdl-38076898

RESUMEN

Silver sulfide nanoparticles (Ag 2 S-NP) have been proposed for various optical-based biomedical applications, such as near-infrared fluorescence (NIRF) imaging, photoacoustics (PA) and photothermal therapy (PTT). However, their absorbance is relatively low in the NIR window used in these applications, and previous formulations were synthesized using toxic precursors under harsh conditions and have clearance issues due to their large size. Herein, we synthesized sub-5 nm Ag 2 S-NP and encapsulated them in biodegradable, polymeric nanoparticles (AgPCPP). All syntheses were conducted using biocompatible reagents in the aqueous phase and under ambient conditions. We found that the encapsulation of Ag 2 S-NP in polymeric nanospheres greatly increases their NIR absorbance, resulting in enhanced optical imaging and photothermal heating effects. We therefore found that AgPCPP have potent contrast properties for PA and NIRF imaging, as well as for computed tomography (CT). We demonstrated the applicability of AgPCPP nanoparticles as a multimodal imaging probe that readily improves the conspicuity of breast tumors in vivo . PTT was performed using AgPCPP with NIR laser irradiation, which led to significant reduction in breast tumor growth and prolonged survival compared to free Ag 2 S-NP. Lastly, we observed a gradual decrease in AgPCPP retention in tissues over time with no signs of acute toxicity, thus providing strong evidence of safety and biodegradability. Therefore, AgPCPP may serve as a "one-for-all" theranostic agent that degrades into small components for excretion once the diagnostic and therapeutic tasks are fulfilled, thus providing good prospects for translation to clinical use.

4.
J Clin Invest ; 133(21)2023 11 01.
Artículo en Inglés | MEDLINE | ID: mdl-37651187

RESUMEN

Biofilms are structured communities of microbial cells embedded in a self-produced matrix of extracellular polymeric substances. Biofilms are associated with many health issues in humans, including chronic wound infections and tooth decay. Current antimicrobials are often incapable of disrupting the polymeric biofilm matrix and reaching the bacteria within. Alternative approaches are needed. Here, we described a complex structure of a dextran-coated gold-in-gold cage nanoparticle that enabled photoacoustic and photothermal properties for biofilm detection and treatment. Activation of these nanoparticles with a near infrared laser could selectively detect and kill biofilm bacteria with precise spatial control and in a short timeframe. We observed a strong biocidal effect against both Streptococcus mutans and Staphylococcus aureus biofilms in mouse models of oral plaque and wound infections, respectively. These effects were over 100 times greater than those seen with chlorhexidine, a conventional antimicrobial agent. Moreover, this approach did not adversely affect surrounding tissues. We concluded that photothermal ablation using theranostic nanoparticles is a rapid, precise, and nontoxic method to detect and treat biofilm-associated infections.


Asunto(s)
Nanopartículas , Técnicas Fotoacústicas , Infección de Heridas , Animales , Ratones , Antibacterianos , Biopelículas , Oro/farmacología , Oro/química , Nanopartículas/química , Medicina de Precisión
5.
ACS Appl Mater Interfaces ; 15(28): 33373-33381, 2023 Jul 19.
Artículo en Inglés | MEDLINE | ID: mdl-37395349

RESUMEN

The current standard of care for colon cancer surveillance relies heavily on white light endoscopy (WLE). However, dysplastic lesions that are not visible to the naked eye are often missed when conventional WLE equipment is used. Although dye-based chromoendoscopy shows promise, current dyes cannot delineate tumor tissues from surrounding healthy tissues accurately. The goal of the present study was to screen various phthalocyanine (PC) dye-loaded micelles for their ability to improve the direct visualization of tumor tissues under white light following intravenous administration. Zinc PC (tetra-tert-butyl)-loaded micelles were identified as the optimal formulation. Their accumulation within syngeneic breast tumors led the tumors to turn dark blue in color, making them clearly visible to the naked eye. These micelles were similarly able to turn spontaneous colorectal adenomas in Apc+/Min mice a dark blue color for easy identification and could enable clinicians to more effectively detect and remove colonic polyps.


Asunto(s)
Neoplasias , Nanopartículas/química , Neoplasias/diagnóstico por imagen , Luz , Colorantes/química , Micelas , Masculino , Animales , Ratones , Humanos , Ratones Endogámicos BALB C , Línea Celular Tumoral
6.
bioRxiv ; 2023 May 08.
Artículo en Inglés | MEDLINE | ID: mdl-37214850

RESUMEN

Biofilms are structured communities of microbial cells embedded in a self-produced matrix of extracellular polymeric substances. Biofilms are associated with many health issues in humans, including chronic wound infections and tooth decay. Current antimicrobials are often incapable of disrupting the polymeric biofilm matrix and reaching the bacteria within. Alternative approaches are needed. Here, we describe a unique structure of dextran coated gold in a gold cage nanoparticle that enables photoacoustic and photothermal properties for biofilm detection and treatment. Activation of these nanoparticles with a near infrared laser can selectively detect and kill biofilm bacteria with precise spatial control and in a short timeframe. We observe a strong biocidal effect against both Streptococcus mutans and Staphylococcus aureus biofilms in mouse models of oral plaque and wound infections respectively. These effects were over 100 times greater than that seen with chlorhexidine, a conventional antimicrobial agent. Moreover, this approach did not adversely affect surrounding tissues. We conclude that photothermal ablation using theranostic nanoparticles is a rapid, precise, and non-toxic method to detect and treat biofilm-associated infections.

7.
Sci Adv ; 7(15)2021 04.
Artículo en Inglés | MEDLINE | ID: mdl-33827816

RESUMEN

Treating osteoarthritis (OA) remains a major clinical challenge. Despite recent advances in drug discovery and development, no disease-modifying drug for knee OA has emerged with any notable clinical success, in part, due to the lack of valid and responsive therapeutic targets and poor drug delivery within knee joints. In this work, we show that the amount of secretory phospholipase A2 (sPLA2) enzyme increases in the articular cartilage in human and mouse OA cartilage tissues. We hypothesize that the inhibition of sPLA2 activity may be an effective treatment strategy for OA. To develop an sPLA2-responsive and nanoparticle (NP)-based interventional platform for OA management, we incorporated an sPLA2 inhibitor (sPLA2i) into the phospholipid membrane of micelles. The engineered sPLA2i-loaded micellar NPs (sPLA2i-NPs) were able to penetrate deep into the cartilage matrix, prolong retention in the joint space, and mitigate OA progression. These findings suggest that sPLA2i-NPs can be promising therapeutic agents for OA treatment.


Asunto(s)
Nanopartículas , Osteoartritis , Fosfolipasas A2 Secretoras , Animales , Inflamación , Ratones , Micelas , Osteoartritis/tratamiento farmacológico , Fosfolipasas A2 Secretoras/uso terapéutico
8.
J Neurooncol ; 149(2): 243-252, 2020 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-32914293

RESUMEN

INTRODUCTION: Glioblastoma multiforme (GBM) is the most common primary intracranial malignancy; survival can be improved by maximizing the extent-of-resection. METHODS: A near-infrared fluorophore (Indocyanine-Green, ICG) was combined with a photosensitizer (Chlorin-e6, Ce6) on the surface of superparamagnetic-iron-oxide-nanoparticles (SPIONs), all FDA-approved for clinical use, yielding a nanocluster (ICS) using a microemulsion. The physical-chemical properties of the ICS were systematically evaluated. Efficacy of photodynamic therapy (PDT) was evaluated in vitro with GL261 cells and in vivo in a subtotal resection trial using a syngeneic flank tumor model. NIR imaging properties of ICS were evaluated in both a flank and an intracranial GBM model. RESULTS: ICS demonstrated high ICG and Ce6 encapsulation efficiency, high payload capacity, and chemical stability in physiologic conditions. In vitro cell studies demonstrated significant PDT-induced cytotoxicity using ICS. Preclinical animal studies demonstrated that the nanoclusters can be detected through NIR imaging in both flank and intracranial GBM tumors (ex: 745 nm, em: 800 nm; mean signal-to-background 8.5 ± 0.6). In the flank residual tumor PDT trial, subjects treated with PDT demonstrated significantly enhanced local control of recurrent neoplasm starting on postoperative day 8 (23.1 mm3 vs 150.5 mm3, p = 0.045), and the treatment effect amplified to final mean volumes of 220.4 mm3 vs 806.1 mm3 on day 23 (p = 0.0055). CONCLUSION: A multimodal theragnostic agent comprised solely of FDA-approved components was developed to couple optical imaging and PDT. The findings demonstrated evidence for the potential theragnostic benefit of ICS in surgical oncology that is conducive to clinical integration.


Asunto(s)
Carbocianinas/química , Glioblastoma/terapia , Nanopartículas/administración & dosificación , Procedimientos Neuroquirúrgicos/métodos , Fotoquimioterapia/métodos , Porfirinas/química , Cirugía Asistida por Computador/métodos , Animales , Apoptosis , Proliferación Celular , Colorantes , Terapia Combinada , Femenino , Fluorescencia , Glioblastoma/metabolismo , Glioblastoma/patología , Humanos , Ratones , Ratones Endogámicos C57BL , Nanopartículas/química , Nanomedicina Teranóstica , Células Tumorales Cultivadas , Ensayos Antitumor por Modelo de Xenoinjerto
9.
ACS Nano ; 14(7): 8103-8115, 2020 07 28.
Artículo en Inglés | MEDLINE | ID: mdl-32484651

RESUMEN

Treating persistent neuropathic pain remains a major clinical challenge. Current conventional treatment approaches carry a substantial risk of toxicity and provide only transient pain relief. In this work, we show that the activity and expression of the inflammatory mediator secretory phospholipase-A2 (sPLA2) enzyme increases in the spinal cord after painful nerve root compression. We then develop phospholipid micelle-based nanoparticles that release their payload in response to sPLA2 activity. Using a rodent model of neuropathic pain, phospholipid micelles loaded with the sPLA2 inhibitor, thioetheramide-PC (TEA-PC), are administered either locally or intravenously at the time of painful injury or 1-2 days afterward. Local micelle administration immediately after compression prevents pain for up to 7 days. Delayed intravenous administration of the micelles attenuates existing pain. These findings suggest that sPLA2 inhibitor-loaded micelles can be a promising anti-inflammatory nanotherapeutic for neuropathic pain treatment.


Asunto(s)
Micelas , Neuralgia , Humanos , Neuralgia/tratamiento farmacológico , Fosfolipasas A2 , Fosfolípidos
10.
ACS Appl Bio Mater ; 3(4): 2344-2349, 2020 Apr 20.
Artículo en Inglés | MEDLINE | ID: mdl-32455339

RESUMEN

Recently, near-infrared (NIR) fluorescent dyes such as indocyanine green (ICG) have received tremendous interest as contrast agents for use in fluorescence-guided, intraoperative cancer resection surgery. However, despite showing great promise, ICG has many shortcomings such as rapid clearance and poor tumor accumulation. To improve the selective accumulation of ICG within tumors, numerous groups have formulated ICG into nanoparticles, but these approaches can suffer from rapid leakage of ICG, use of materials that exhibit poor or incomplete excretion, or complex chemistries that are not easily amenable to scale up for clinical use. Here, we developed a simple one-step method to prepare ICG-based fluorescent micelles that are composed solely of unmodified ICG and polycaprolactone (PCL), two clinically used materials with well-characterized safety profiles. The ICG-PCL micelles are prepared via oil-in-water emulsions, and the resulting micelles exhibit a uniform size, good reproducibility, and high loading efficiency. In vivo fluorescence imaging demonstrated that the ICG-PCL micelles led to a significant improvement in the accumulation and retention of ICG, in four different tumor models, compared with free dye, making them an attractive option for image-guided surgery.

11.
J Am Chem Soc ; 142(17): 7783-7794, 2020 04 29.
Artículo en Inglés | MEDLINE | ID: mdl-32271558

RESUMEN

Gold is a highly useful nanomaterial for many clinical applications, but its poor biodegradability can impair long-term physiological clearance. Large gold nanoparticles (∼10-200 nm), such as those required for long blood circulation times and appreciable tumor localization, often exhibit little to no dissolution and excretion. This can be improved by incorporating small gold particles within a larger entity, but elimination may still be protracted due to incomplete dispersion of gold. The present study describes a novel gold nanoparticle formulation capable of environmentally triggered decomposition. Ultrasmall gold nanoparticles are coated with thiolated dextran, and hydrophobic acetal groups are installed through direct covalent modification of the dextran. This hydrophobic exterior allows gold to be densely packed within ∼150 nm polymeric micelles. Upon exposure to an acidic environment, the acetal groups are cleaved and the gold nanoparticles become highly water-soluble, leading to destabilization of the micelle. Within 24 h, the ultrasmall water-soluble gold particles are released from the micelle and readily dispersed. Micelle degradation and gold nanoparticle dispersion was imaged in cultured macrophages, and micelle-treated mice displayed progressive physiological clearance of gold, with >85% elimination from the liver over three months. These particles present a novel nanomaterial formulation and address a critical unresolved barrier for clinical translation of gold nanoparticles.


Asunto(s)
Oro/química , Interacciones Hidrofóbicas e Hidrofílicas , Nanopartículas del Metal/química , Humanos , Concentración de Iones de Hidrógeno
12.
ACS Nano ; 14(1): 142-152, 2020 01 28.
Artículo en Inglés | MEDLINE | ID: mdl-31854966

RESUMEN

Drug delivery to solid tumors is hindered by hydrostatic and physical barriers that limit the penetration of nanocarriers into tumor tissue. When exploiting the enhanced permeability and retention (EPR) effect for passive targeting of nanocarriers, the increased interstitial fluid pressure and dense extracellular matrix in tumors limits the distribution of the nanocarriers to perivascular regions. Previous strategies have shown that magnetophoresis enhances accumulation and penetration of nanoparticles into solid tumors. However, because magnetic fields fall off rapidly with distance from the magnet, these methods have been limited to use in superficial tumors. To overcome this problem, we have developed a system comprising two oppositely polarized magnets that enables the penetration of magnetic nanocarriers into more deeply seeded tumors. Using this method, we demonstrate a 5-fold increase in the penetration and a 3-fold increase in the accumulation of magnetic nanoparticles within solid tumors compared to EPR.


Asunto(s)
Neoplasias de la Mama/diagnóstico por imagen , Nanopartículas/química , Animales , Neoplasias de la Mama/patología , Portadores de Fármacos/química , Sistemas de Liberación de Medicamentos , Femenino , Fenómenos Magnéticos , Ratones , Ratones Endogámicos BALB C , Neoplasias Experimentales/diagnóstico por imagen , Neoplasias Experimentales/patología , Tamaño de la Partícula , Propiedades de Superficie
13.
Bioconjug Chem ; 30(11): 2974-2981, 2019 11 20.
Artículo en Inglés | MEDLINE | ID: mdl-31661959

RESUMEN

Photodynamic therapy (PDT) has attracted extensive attention in recent years as a noninvasive and locally targeted cancer treatment approach. Nanoparticles have been used to improve the solubility and pharmacokinetics of the photosensitizers required for PDT; however, nanoparticles also suffer from many shortcomings including uncontrolled drug release and low tumor accumulation. Herein, we describe a novel biodegradable nanoplatform for the delivery of the clinically used PDT photosensitizer benzoporphyrin derivative monoacid ring A (BPD-MA) to tumors. Specifically, the hydrophobic photosensitizer BPD was covalently conjugated to the amine groups of a dextran-b-oligo (amidoamine) (dOA) dendron copolymer, forming amphiphilic dextran-BPD conjugates that can self-assemble into nanometer-sized micelles in water. To impart additional imaging capabilities to these micelles, superparamagnetic iron oxide nanoparticles (SPIONs) were encapsulated within the hydrophobic core to serve as a magnetic resonance imaging (MRI) contrast agent. The use of a photosensitizer as a hydrophobic building block enabled facile and reproducible synthesis and high drug loading capacity (∼30%, w/w). Furthermore, covalent conjugation of BPD to dextran prevents the premature release of drug during systemic circulation. In vivo studies show that the intravenous administration of dextran-BPD coated SPION nanoparticles results in significant MR contrast enhancement within tumors 24 h postinjection and PDT led to a significant reduction in the tumor growth rate.


Asunto(s)
Neoplasias de la Mama/tratamiento farmacológico , Dextranos/química , Imagen por Resonancia Magnética/métodos , Nanopartículas de Magnetita/química , Fotoquimioterapia , Fármacos Fotosensibilizantes/farmacología , Porfirinas/farmacología , Animales , Neoplasias de la Mama/metabolismo , Neoplasias de la Mama/patología , Proliferación Celular , Medios de Contraste/metabolismo , Liberación de Fármacos , Femenino , Compuestos Férricos/química , Humanos , Ratones , Ratones Endogámicos BALB C , Ratones Desnudos , Micelas , Fármacos Fotosensibilizantes/química , Polímeros/química , Porfirinas/química , Células Tumorales Cultivadas , Ensayos Antitumor por Modelo de Xenoinjerto
14.
ACS Appl Mater Interfaces ; 11(32): 28648-28656, 2019 Aug 14.
Artículo en Inglés | MEDLINE | ID: mdl-31321973

RESUMEN

Overproduction of reactive oxygen species (ROS) is often related to inflammation or cancer and can cause tissue damage. Probes that have been previously reported to image ROS typically rely on imaging techniques that have low depth penetration in tissue, thus limiting their use to superficial disease sites. We report herein a novel formulation of hybrid nanogels loaded with gold nanoparticles (AuNP) to produce contrast for computed tomography (CT) and photoacoustics (PA), both being deep-tissue imaging techniques. The polyphosphazene polymer has been designed to selectively degrade upon ROS exposure, which triggers a switch-off of the PA signal by AuNP disassembly. This ROS-triggered degradation of the nanoprobes leads to a significant decrease in the PA contrast, thus allowing ratiometric ROS imaging by comparing the PA to CT signal. Furthermore, ROS imaging using these nanoprobes was applied to an in vitro model of inflammation, that is, LPS-stimulated macrophages, where ROS-triggered disassembly of the nanoprobe was confirmed via reduction of the PA signal. In summary, these hybrid nanoprobes are a novel responsive imaging agent that have the potential to image ROS overproduction by comparing PA to CT contrast.


Asunto(s)
Medios de Contraste , Oro , Nanopartículas del Metal/química , Imagen Multimodal , Compuestos Organofosforados , Técnicas Fotoacústicas , Polímeros , Especies Reactivas de Oxígeno/análisis , Tomografía Computarizada por Rayos X , Animales , Medios de Contraste/química , Medios de Contraste/farmacología , Oro/química , Oro/farmacología , Células Hep G2 , Humanos , Ratones , Compuestos Organofosforados/química , Compuestos Organofosforados/farmacología , Polímeros/química , Polímeros/farmacología , Células RAW 264.7
15.
Sci Rep ; 9(1): 2613, 2019 02 22.
Artículo en Inglés | MEDLINE | ID: mdl-30796251

RESUMEN

Photodynamic therapy (PDT) is an approved modality for the treatment of various types of maligancies and diseased states. However, most of the available photosensitizers (PS) are highly hydrophobic, which limits their solubility and dispersion in biological fluids and can lead to self-quenching and sub-optimal therapeutic efficacy. In this study, chlorin e6 (Ce6)-coated superparamagnetic iron oxide nanoparticle (SPION) nanoclusters (Ce6-SCs) were prepared via an oil-in-water emulsion. The physical-chemical properties of the Ce6-SCs were systematically evaluated. Dual-mode imaging and PDT was subsequently performed in tumor-bearing mice. Chlorin e6 is capable of solubilizing hydrophobic SPION into stable, water-soluble nanoclusters without the use of any additional amphiphiles or carriers. The method is reproducible and the Ce6-SCs are highly stable under physiological conditions. The Ce6-SCs have an average diameter of 92 nm and low polydispersity (average PDI < 0.2). Encapsulation efficiency of both Ce6 and SPION is ≈100%, and the total Ce6 payload can be as high as 56% of the total weight (Ce6 + Fe). The Ce6-SCs localize within tumors via enhanced permeability and retention and are detectable by magnetic resonance (MR) and optical imaging. With PDT, Ce6-SCs demonstrate high singlet oxygen generation and produce a significant delay in tumor growth in mice.


Asunto(s)
Dextranos/química , Diagnóstico por Imagen , Nanopartículas de Magnetita/química , Fotoquimioterapia , Porfirinas/química , Nanomedicina Teranóstica , Animales , Muerte Celular , Línea Celular Tumoral , Clorofilidas , Dextranos/síntesis química , Modelos Animales de Enfermedad , Células Endoteliales de la Vena Umbilical Humana/metabolismo , Humanos , Imagen por Resonancia Magnética , Nanopartículas de Magnetita/ultraestructura , Ratones Desnudos , Neoplasias/diagnóstico por imagen , Neoplasias/terapia , Imagen Óptica , Porfirinas/sangre , Porfirinas/síntesis química , Oxígeno Singlete/química , Carga Tumoral
16.
Mol Cancer Res ; 17(5): 1102-1114, 2019 05.
Artículo en Inglés | MEDLINE | ID: mdl-30642878

RESUMEN

The high incidence of glioblastoma recurrence necessitates additional therapeutic strategies. Heterogeneous populations of cells, including glioma stem cells (GSC) have been implicated in disease recurrence. GSCs are able to survive irradiation and temozolomide (TMZ) treatment due to upregulation of DNA damage pathways. One potential strategy to target treatment-resistant tumor populations may be via the integrated stress response (ISR). Modulation of the ISR pathway also allows for sensitization of treatment-resistant cells to TRAIL. We generated a novel cell-based death receptor assay to identify potent inducers of ISR-dependent DR5 expression. We used this assay to screen compounds from three commercially available libraries, and identified 1-benzyl-3-cetyl-2-methylimidazolium iodide (NH125) as a potent inducer of DR5 expression. NH125 engages the EIF2α-ATF4-CHOP axis culminating in DR5 expression at low micromolar doses. Expression of CHOP plays a critical role in NH125-mediated TRAIL synergy. Treatment of GSC with NH125 produces a marked reduction in viability when compared with other cell lines. NH125-treated GSC also synergize with lower doses of TRAIL when compared with all other cell lines tested. Transcriptional analysis of NH125-treated GSC uncovers a unique profile that involves activation of ISR and GADD45 pathways. Treatment of GSC xenografts with encapsulated PEG-PCL-NH125 leads to a sustained decrease in tumor volume. IMPLICATIONS: Taken together, these data suggest that engaging the ISR pathway represents a promising strategy to target treatment refractory GSC that have been implicated in glioblastoma recurrence.


Asunto(s)
Neoplasias Encefálicas/genética , Glioma/tratamiento farmacológico , Imidazoles/administración & dosificación , Células Madre Neoplásicas/efectos de los fármacos , Receptores del Ligando Inductor de Apoptosis Relacionado con TNF/genética , Ligando Inductor de Apoptosis Relacionado con TNF/administración & dosificación , Animales , Neoplasias Encefálicas/tratamiento farmacológico , Neoplasias Encefálicas/metabolismo , Línea Celular Tumoral , Supervivencia Celular/efectos de los fármacos , Resistencia a Antineoplásicos/efectos de los fármacos , Sinergismo Farmacológico , Regulación Neoplásica de la Expresión Génica/efectos de los fármacos , Glioma/genética , Glioma/metabolismo , Humanos , Imidazoles/farmacología , Ratones , Células Madre Neoplásicas/metabolismo , Ligando Inductor de Apoptosis Relacionado con TNF/farmacología , Factor de Transcripción CHOP/genética , Ensayos Antitumor por Modelo de Xenoinjerto
17.
Adv Ther (Weinh) ; 2(9)2019 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-35494480

RESUMEN

Traditional oncology treatment modalities are often associated with a poor therapeutic index. This has driven the development of new targeted treatment modalities, including several based on the conversion of optical light into heat energy (photothermal therapy, PTT) and sound waves (photoacoustic imaging, PA) that can be applied locally. These approaches are especially effective when combined with photoactive nanoparticles that preferentially accumulate in tissues of interest and thereby further increase spatiotemporal resolution. In this study, two clinically-used materials that have proven effective in both PTT and PA - indocyanine green and gold nanoparticles - were combined into a single nanoformulation. These particles, "ICG-AuNP clusters", incorporated high concentrations of both moieties without the need for additional stabilizing or solubilizing reagents. The clusters demonstrated high theranostic efficacy both in vitro and in vivo, compared with ICG alone. Specifically, in an orthotopic mouse model of triple-negative breast cancer, ICG-AuNP clusters could be injected intravenously, imaged in the tumor by PA, and then combined with near-infrared laser irradiation to successfully thermally ablate tumors and prolong animal survival. Altogether, this novel nanomaterial demonstrates excellent therapeutic potential for integrated treatment and imaging.

18.
Nanoscale ; 10(39): 18749-18757, 2018 Oct 21.
Artículo en Inglés | MEDLINE | ID: mdl-30276391

RESUMEN

Nanostructures have potential for use in biomedical applications such as sensing, imaging, therapeutics, and drug delivery. Among nanomaterials, gold nanostructures are of considerable interest for biomedical research, owing to their bio-inertness, controllable surface chemistry, X-ray opacity, and optical properties. Gold nanocages are particularly attractive for imaging and therapeutic applications, because they strongly absorb light in the near infra-red region which has high light transmission in tissue. However, the X-ray attenuation of nanocages is relatively low due to their hollow structure. In this study, for the first time, we sought to combine the attractive optical properties of nanoshells with the high payloads of solid nanoparticles and investigated their biomedical applications. Here, we report the engineering of Wulff in a cage nanoparticles via converting gold Wulff-shaped seeds into gold-silver core-shell structures and then performing a galvanic replacement reaction. The structure of these nanoparticles was determined using transition electron microscopy. This morphological transformation of gold nanoparticles shaped as truncated octahedrons into a complex Wulff in a cage nanoparticles during the reaction resulted in extensive changes in their optical properties that made these unique structures a potential contrast agent for photoacoustic imaging. We found that the Wulff in a cage nanoparticles had no adverse effects on the viabilities of J774A.1, Renca, and HepG2 cells at any of the concentrations tested. In vitro and in vivo experiments showed robust signals in both photoacoustic imaging and computed tomography. To the best of our knowledge, this is the first report of Wulff in a cage nanoparticles serving as a platform for multiple imaging modalities. This unique multifunctional nanostructure, which integrates the competencies of both core and shell structures, allows their use as contrast agents for photoacoustic imaging, computed tomography and as a potential agent for photothermal therapy.

19.
J Am Chem Soc ; 140(42): 13550-13553, 2018 10 24.
Artículo en Inglés | MEDLINE | ID: mdl-30351141

RESUMEN

Recently, it has been shown that amphiphilic dyes such as Indocyanine Green (ICG) and Protoporphyrin IX (PpIX) can solubilize hydrophobic colloids and/or drugs by driving the formation of stable nanoemulsions. These nanoemulsions are unique in that they can be composed entirely of functional and clinically used materials; however, they lack bio-orthogonal chemical handles for the facile attachment of targeting ligands. The ability to target nanoparticles is desirable because it can lead to improved specificity and reduced side effects. Here, we describe variants of ICG and PpIX with azide handles that can be readily incorporated into dye-stabilized nanoemulsions and facilitate the attachment of targeting ligands via click-chemistry in a simple, scalable, and reproducible reaction. As a model system, an anti-Her2 affibody was site-specifically attached to both ICG and PpIX-stabilized nanoemulsions with encapsulated superparamagnetic iron oxide nanoparticles.


Asunto(s)
Colorantes/química , Emulsiones/química , Inmunoconjugados/química , Verde de Indocianina/química , Nanopartículas de Magnetita/química , Protoporfirinas/química , Línea Celular , Química Clic , Sistemas de Liberación de Medicamentos , Humanos , Nanopartículas de Magnetita/ultraestructura , Modelos Moleculares
20.
Adv Funct Mater ; 28(16)2018 Apr 17.
Artículo en Inglés | MEDLINE | ID: mdl-29910700

RESUMEN

The ability to produce nanotherapeutics at large-scale with high drug loading efficiency, high drug loading capacity, high stability, and high potency is critical for clinical translation. However, many nanoparticle-based therapeutics under investigation suffer from complicated synthesis, poor reproducibility, low stability, and high cost. In this work, a simple method for preparing multifunctional nanoparticles is utilized that act as both a contrast agent for magnetic resonance imaging and a photosensitizer for photodynamic therapy for the treatment of cancer. In particular, the photosensitizer protoporphyrin IX (PpIX) is used to solubilize small nanoclusters of superparamagnetic iron oxide nanoparticles (SPIONs) without the use of any additional carrier materials. These nanoclusters are characterized with a high PpIX loading efficiency; a high loading capacity, stable behavior; high potency; and a synthetic approach that is amenable to large-scale production. In vivo studies of photodynamic therapy (PDT) efficacy show that the PpIX-coated SPION nanoclusters lead to a significant reduction in the growth rate of tumors in a syngeneic murine tumor model compared to both free PpIX and PpIX-loaded poly(ethylene glycol)-polycaprolactone micelles, even when injected at 1/8th the dose. These results suggest that the nanoclusters developed in this work can be a promising nanotherapeutic for clinical translation.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...