Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Food Chem Toxicol ; 123: 385-398, 2019 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-30423403

RESUMEN

Neferine is a bisbenzylisoquinoline alkaloid isolated from the embryos of lotus which has attracted attention for its anti-inflammatory and anti-cancer activities. The aim of this study was to evaluate the anti-cancer effect of neferine against diethylnitrosamine (DEN)-induced lung carcinogenesis in Wistar rats and to explore the underlying molecular mechanism. DEN-induced oxidative stress is mediated by alterations in the levels of pulmonary reactive-oxygen species, lipid peroxidation, protein carbonyl content and antioxidant status. Thus, treatment with neferine restored cellular normalcy, highlighting the antioxidant potential of neferine in mitigating the oxidative stress-mediated damage produced during DEN-induced lung carcinogenesis. Histopathological analysis showed disorganized alveolar structure, thickened alveolar wall, infiltration of inflammatory cells in DEN-induced rats, the damage was significantly reduced upon neferine treatment. DEN-induced rats exhibited increased gene expression of NF-κB, COX-2, CYP2E1, VEGF, Bcl-2, PI3K/AKT/mTOR and significantly decreased the gene expression of p53, Bax, caspase-9 and caspase-3. Neferine treatment restored the DEN- induced alteration of these gene expression levels. Further, blotting analysis also revealed increased expression of NF-κB, COX-2, Bcl-2 and decreased expression of Bax, caspase-9 and caspase-3 proteins in DEN-induced rats. Neferine treatment restored the expression of these proteins in DEN- induced lung carcinogenesis.


Asunto(s)
Antineoplásicos Fitogénicos/administración & dosificación , Bencilisoquinolinas/administración & dosificación , Dietilnitrosamina/efectos adversos , Neoplasias Pulmonares/tratamiento farmacológico , Animales , Apoptosis/efectos de los fármacos , Carcinogénesis/efectos de los fármacos , Humanos , Neoplasias Pulmonares/inducido químicamente , Neoplasias Pulmonares/metabolismo , Neoplasias Pulmonares/patología , Masculino , FN-kappa B/genética , FN-kappa B/metabolismo , Estrés Oxidativo/efectos de los fármacos , Fosfatidilinositol 3-Quinasas/genética , Fosfatidilinositol 3-Quinasas/metabolismo , Ratas , Ratas Wistar , Especies Reactivas de Oxígeno/metabolismo
2.
Mater Sci Eng C Mater Biol Appl ; 77: 1189-1195, 2017 Aug 01.
Artículo en Inglés | MEDLINE | ID: mdl-28531995

RESUMEN

A number of materials are now available to alleviate the ever-growing bone disruption. However, these are inadequate and inappropriate for addressing issues associated natural process of aging and degeneration of bone due to diseases. This study advances the existing material and offers more privileged and synergistically active remedy for these conditions. Here, they are three different nano-composites prepared such as nano-TiO2 with chitosan (TC), nano-TiO2 with chondroitin 4-sulfate (TG), and nano-TiO2 with chitosan and chondroitin 4-sulfate (TCG), whereas nano-TiO2 act as a control. The prepared nanocomposite was studied for determining its bactericidal and fungicidal activity by using disk diffusion method. In addition, the osteoinductive, free radical forming, and scavenging abilities of the nanocomposite treated MG-63 cell lines were analyzed using gene expression and biochemical analysis respectively. The augmented fungicidal (~16mm) activities of TCG against bone-infecting pathogens can be effectively used in bone transplantation application. The expression of osteoblast-inducing genes in MG-63 cell line and their up-regulation in nanocomposite treatment, especially in TCG, made this material more desirable. The formation of free radicals such as thiobarbituric acid reactive substance and nitric oxide gradually reduced with the treatment of nanocomposites than control and nano-TiO2. Contrarily, it was found that MG-63 along with nanocomposites statistically increases the production of ALP, antioxidant enzymes (super oxide mutase) and total antioxidant activity (ferric reducing antioxidant power) in several folds compare with the control and nano-TiO2. All the results with statistical scale suggest TCG as an effectual and affordable biomaterial in bone regeneration therapy among the prepared samples.


Asunto(s)
Nanocompuestos , Huesos , Quitosano , Matriz Extracelular , Radicales Libres , Titanio
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA