Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Comput Intell Neurosci ; 2022: 9464633, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-36210980

RESUMEN

Modulation classification is one of the essential requirements in the various cognitive radio applications where prior information about the incoming signal is unknown. The modulation classification using a pattern recognition approach can be achieved in 2 modules: first, parameters are extracted from the noisy signal, and then feature selection is carried out using a Gabor filter network (GFN). In the second module, features are exploited for classification purposes. The modulation formats considered for the purpose of classification are BPSK, QPSK, 8PSK, 16PSK, 64PSK, 4FSK, 8FSK, 16FSK, QAM, 8QAM, 16QAM, 32QAM, and 64QAM. The Gabor filter parameters and weights of the adaptive filter are attuned using the Delta rule and recursive least square (RLS) algorithm until the cost function is minimized. In the end, the artificial bee colony (ABC) algorithm is used to optimize the Gabor parameters as well as the classifier's performance. The simulation results show the supremacy of the proposed classifier structure.


Asunto(s)
Algoritmos , Simulación por Computador
2.
J Healthc Eng ; 2022: 5707930, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-35437465

RESUMEN

Facial expression is one of the most significant elements which can tell us about the mental state of any person. A human can convey approximately 55% of information nonverbally and the remaining almost 45% through verbal communication. Automatic facial expression recognition is presently one of the most difficult tasks in the computer science field. Applications of facial expression recognition (FER) are not just limited to understanding human behavior and monitoring person's mood and the mental state of humans. It is also penetrating into other fields such as criminology, holographic, smart healthcare systems, security systems, education, robotics, entertainment, and stress detection. Currently, facial expressions are playing an important role in medical sciences, particularly helping the patients with bipolar disease, whose mood changes very frequently. In this study, an algorithm, automated framework for facial detection using a convolutional neural network (FD-CNN) is proposed with four convolution layers and two hidden layers to improve accuracy. An extended Cohn-Kanade (CK+) dataset is used that includes facial images of different males and females with expressions such as anger, fear, disgust, contempt, neutral, happy, sad, and surprise. In this study, FD-CNN is performed in three major steps that include preprocessing, feature extraction, and classification. By using this proposed method, an accuracy of 94% is obtained in FER. In order to validate the proposed algorithm, K-fold cross-validation is performed. After validation, sensitivity and specificity are calculated which are 94.02% and 99.14%, respectively. Furthermore, the f1 score, recall, and precision are calculated to validate the quality of the model which is 84.07%, 78.22%, and 94.09%, respectively.


Asunto(s)
Aprendizaje Profundo , Reconocimiento Facial , Cara , Expresión Facial , Femenino , Humanos , Masculino , Redes Neurales de la Computación
3.
Micromachines (Basel) ; 13(2)2022 Feb 17.
Artículo en Inglés | MEDLINE | ID: mdl-35208438

RESUMEN

An analytical model to predict the surface roughness for the plasma-enhanced chemical vapor deposition (PECVD) process over a large range of temperature values is still nonexistent. By using an existing prediction model, the surface roughness can directly be calculated instead of repeating the experimental processes, which can largely save time and resources. This research work focuses on the investigation and analytical modeling of surface roughness of SiO2 deposition using the PECVD process for almost the whole range of operating temperatures, i.e., 80 to 450 °C. The proposed model is based on experimental data of surface roughness against different temperature conditions in the PECVD process measured using atomic force microscopy (AFM). The quality of these SiO2 layers was studied against an isolation layer in a microelectromechanical system (MEMS) for light steering applications. The analytical model employs different mathematical approaches such as linear and cubic regressions over the measured values to develop a prediction model for the whole operating temperature range of the PECVD process. The proposed prediction model is validated by calculating the percent match of the analytical model with experimental data for different temperature ranges, counting the correlations and error bars.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...