Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 11 de 11
Filtrar
1.
Sci Rep ; 10(1): 20516, 2020 11 25.
Artículo en Inglés | MEDLINE | ID: mdl-33239632

RESUMEN

Early dietary exposure may influence infant appetitive feeding behaviour, and therefore their later health. Maternal diabetes in pregnancy is associated with an increased risk of obesity in the offspring. We, therefore, examined third-trimester dietary patterns of women with gestational diabetes, their offspring's appetitive feeding behaviour at 6 months of age, and relationships between these. We used data from a prospective cohort of women with gestational diabetes and assessed maternal dietary patterns at 36 weeks' gestation using principal component analysis; infant appetitive feeding behaviour at 6 months of age using the Baby Eating Behaviour Questionnaire; and relationships between these using general linear modelling and chi-square tests. In 325 mother-infant dyads, we identified three distinct maternal dietary patterns: 'Junk,' 'Mixed,' and 'Health-conscious.' The maternal 'Health-conscious' pattern was inversely associated with 'enjoyment of food' in their sons (ß - 0.24, 95% CI - 0.36 to - 0.11, p = 0.0003), but not daughters (ß - 0.02, 95% CI - 0.12 to 0.08, p = 0.70), and was positively associated with 'slowness in eating,' (ß 0.13, 95% CI 0.02 to 0.24, p = 0.01). Third-trimester dietary patterns in women with gestational diabetes may have sex-specific effects on infant appetitive feeding behaviour at 6 months of age.


Asunto(s)
Apetito , Diabetes Gestacional/epidemiología , Conducta Alimentaria , Fenómenos Fisiologicos Nutricionales Maternos , Femenino , Alimentos , Humanos , Lactante , Recién Nacido , Nueva Zelanda , Embarazo , Análisis de Componente Principal , Encuestas y Cuestionarios
2.
Cochrane Database Syst Rev ; 9: CD000433, 2020 09 23.
Artículo en Inglés | MEDLINE | ID: mdl-32964431

RESUMEN

BACKGROUND: Preterm infants require high protein intake to achieve adequate growth and development. Although breast milk feeding has many benefits for this population, the protein content is highly variable, and inadequate to support rapid infant growth. This is a 2020 update of a Cochrane Review first published in 1999. OBJECTIVES: To determine whether protein-supplemented human milk compared with unsupplemented human milk, fed to preterm infants, improves growth, body composition, cardio-metabolic, and neurodevelopmental outcomes, without significant adverse effects. SEARCH METHODS: We used the standard search strategy of Cochrane Neonatal to search Cochrane Central Register of Controlled Trials (CENTRAL 2019, Issue 8) in the Cochrane Library and MEDLINE via PubMed on 23 August 2019. We also searched clinical trials databases and the reference lists of retrieved articles for randomised controlled trials and quasi-randomised trials. SELECTION CRITERIA: Published and unpublished RCTs were eligible if they used random or quasi-random methods to allocate hospitalised preterm infants who were being fed human milk, to additional protein supplementation or no supplementation. DATA COLLECTION AND ANALYSIS: Two review authors independently abstracted data, assessed risk of bias and the quality of evidence at the outcome level, using GRADE methodology. We performed meta-analyses, using risk ratio (RR) for dichotomous data, and mean difference (MD) for continuous data, with their respective 95% confidence intervals (CIs). We used a fixed-effect model and had planned to explore potential causes of heterogeneity via subgroup or sensitivity analyses. MAIN RESULTS: We included six RCTs, involving 204 preterm infants. The risk of bias for most methodological domains was unclear as there was insufficient detail reported. Low-quality evidence showed that protein supplementation of human milk may increase in-hospital rates of growth in weight (MD 3.82 g/kg/day, 95% CI 2.94 to 4.7; five RCTs, 101 infants; I² = 73%), length (MD 0.12 cm/wk, 95% CI 0.07 to 0.17; four RCTs, 68 infants; I² = 89%), and head circumference (MD 0.06 cm/wk, 95% CI 0.01 to 0.12; four RCTs, 68 infants; I² = 84%). Protein supplementation may lead to longer hospital stays (MD 18.5 days, 95% CI 4.39 to 32.61; one RCT, 20 infants; very low-quality evidence). Very low quality evidence means that the effect of protein supplementation on the risk of feeding intolerance (RR 2.70, 95% CI 0.13 to 58.24; one RCT, 17 infants), or necrotizing enterocolitis (RR 1.11, 95% CI 0.07 to 17.12; one RCT, 76 infants) remains uncertain. No data were available about the effects of protein supplementation on neurodevelopmental outcomes. AUTHORS' CONCLUSIONS: Low-quality evidence showed that protein supplementation of human milk, fed to preterm infants, increased short-term growth. However, the small sample sizes, low precision, and very low-quality evidence regarding duration of hospital stay, feeding intolerance, and necrotising enterocolitis precluded any conclusions about these outcomes. There were no data on outcomes after hospital discharge. Our findings may not be generalisable to low-resource settings, as none of the included studies were conducted in these settings. Since protein supplementation of human milk is now usually done as a component of multi-nutrient fortifiers, future studies should compare different amounts of protein in multi-component fortifiers, and be designed to determine the effects on duration of hospital stay and safety, as well as on long-term growth, body composition, cardio-metabolic, and neurodevelopmental outcomes.


Asunto(s)
Proteínas en la Dieta , Suplementos Dietéticos , Fenómenos Fisiológicos Nutricionales del Lactante , Recien Nacido Prematuro/crecimiento & desarrollo , Leche Humana , Sesgo , Estatura , Enterocolitis Necrotizante/epidemiología , Cabeza/crecimiento & desarrollo , Humanos , Recién Nacido , Tiempo de Internación/estadística & datos numéricos , Leche Humana/química , Ensayos Clínicos Controlados Aleatorios como Asunto , Aumento de Peso
3.
Cochrane Database Syst Rev ; 9: CD000280, 2020 09 08.
Artículo en Inglés | MEDLINE | ID: mdl-32898300

RESUMEN

BACKGROUND: Preterm infants are born with low glycogen stores and require higher glucose intake to match fetal accretion rates. In spite of the myriad benefits of breast milk for preterm infants, it may not adequately meet the needs of these rapidly growing infants. Supplementing human milk with carbohydrates may help. However, there is a paucity of data on assessment of benefits or harms of carbohydrate supplementation of human milk to promote growth in preterm infants. This is a 2020 update of a Cochrane Review first published in 1999. OBJECTIVES: To determine whether human milk supplemented with carbohydrate compared with unsupplemented human milk fed to preterm infants improves growth, body composition, and cardio-metabolic and neurodevelopmental outcomes without significant adverse effects. SEARCH METHODS: We used the standard search strategy of Cochrane Neonatal to search Cochrane Central Register of Controlled Trials (CENTRAL 2019, Issue 8) in the Cochrane Library and MEDLINE via PubMed on 22 August 2019. We also searched clinical trials databases and the reference lists of retrieved articles for randomised controlled trials and quasi-randomised trials. SELECTION CRITERIA: Published and unpublished controlled trials were eligible if they used random or quasi-random methods to allocate preterm infants in hospital fed human milk to supplementation or no supplementation with additional carbohydrate. DATA COLLECTION AND ANALYSIS: Two review authors independently abstracted data and assessed trial quality and the quality of evidence at the outcome level using the Grading of Recommendations Assessment, Development and Evaluation (GRADE) method. We planned to perform meta-analyses using risk ratios (RRs) for dichotomous data and mean differences (MDs) for continuous data, with their respective 95% confidence intervals (CIs). We planned to use a fixed-effect model and to explore potential causes of heterogeneity via sensitivity analyses. We contacted study authors for additional information. MAIN RESULTS: One unblinded, quasi-randomised controlled trial (RCT) assessing effects of carbohydrate supplementation of human milk in the form of a prebiotic in 75 preterm infants was eligible for inclusion in this review. We identified two publications of the same trial, which reported different methods regarding blinding and randomisation. Study authors confirmed that these publications pertain to the same trial, but they have not yet clarified which method is correct. We were unable to reproduce analyses from the data presented. At 30 days of age, the mean weight of preterm infants in the trial was greater in the prebiotic carbohydrate-supplemented group than in the unsupplemented group (MD 160.4 grams, 95% CI 12.4 to 308.4 grams; one RCT, N = 75; very low-quality evidence). We found no evidence of a clear difference in risk of feeding intolerance (RR 0.64, 95% CI 0.36 to 1.15; one RCT, N = 75 infants; very low-quality evidence) or necrotising enterocolitis (NEC) (RR 0.2, 95% CI 0.02 to 1.3; one RCT, N = 75 infants; very low-quality evidence) between the prebiotic-supplemented group and the unsupplemented group. Duration of hospital stay was shorter in the prebiotic group than in the control group at a median (range) of 16 (9 to 45) days (95% CI 15.34 to 24.09) and 25 (11 to 80) days (95% CI 25.52 to 34.39), respectively. No other data were available for assessing effects of carbohydrate supplementation on short- and long-term growth, body mass index, body composition, and neurodevelopmental or cardio-metabolic outcomes. AUTHORS' CONCLUSIONS: We found insufficient evidence on the short- and long-term effects of carbohydrate supplementation of human milk in preterm infants. The only trial included in this review presented very low-quality evidence, and study authors provided uncertain information about study methods and analysis. The evidence may be limited in its applicability because researchers included a small sample of preterm infants from a single centre. However, the outcomes assessed are common to all preterm infants, and this trial demonstrates the feasibility of prebiotic carbohydrate supplementation in upper-middle-income countries. Future trials should assess the safety and efficacy of different types and concentrations of carbohydrate supplementation for preterm infants fed human milk. Although prebiotic carbohydrate supplementation in preterm infants is currently a topic of active research, we do not envisage that further trials of digestible carbohydrates will be conducted, as this is currently done as a component of multi-nutrient human milk fortification. Hence we do not plan to publish any further updates of this review.


Asunto(s)
Carbohidratos de la Dieta/administración & dosificación , Suplementos Dietéticos , Fenómenos Fisiológicos Nutricionales del Lactante , Recien Nacido Prematuro/crecimiento & desarrollo , Leche Humana , Prebióticos , Peso Corporal , Enterocolitis Necrotizante/epidemiología , Intolerancia Alimentaria/epidemiología , Humanos , Recién Nacido , Tiempo de Internación , Leche Humana/química , Oligosacáridos/administración & dosificación
4.
Cochrane Database Syst Rev ; 8: CD000341, 2020 08 25.
Artículo en Inglés | MEDLINE | ID: mdl-32842164

RESUMEN

BACKGROUND: As preterm infants do not experience the nutrient accretion and rapid growth phase of the third trimester of pregnancy, they are vulnerable to postnatal nutritional deficits, including of fat. Consequently, they require higher fat intakes compared to their full term counterparts to achieve adequate growth and development. Human milk fat provides the major energy needs of the preterm infant and also contributes to several metabolic and physiological functions. Although human milk has many benefits for this population, its fat content is highly variable and may be inadequate for their optimum growth and development. This is a 2020 update of a Cochrane Review last published in 2000. OBJECTIVES: To determine whether supplementation of human milk with fat compared with unsupplemented human milk fed to preterm infants improves growth, body composition, cardio-metabolic, and neurodevelopmental outcomes without significant adverse effects. SEARCH METHODS: We used the standard search strategy of Cochrane Neonatal to search Cochrane Central Register of Controlled Trials (CENTRAL 2019, Issue 8) in the Cochrane Library and MEDLINE via PubMed on 23 August 2019. We also searched clinical trials databases and the reference lists of retrieved articles for randomised controlled trials and quasi-randomised trials. SELECTION CRITERIA: Published and unpublished randomised controlled trials were eligible if they used random or quasi-random methods to allocate preterm infants fed human milk in hospital to supplementation or no supplementation with additional fat. DATA COLLECTION AND ANALYSIS: No new randomised controlled trials matching the selection criteria were found but we extracted data from the previously included trial due to changes in review outcomes from when the protocol was first published. Two reviewers independently abstracted data, assessed trial quality, and the quality of evidence at the outcome level using the Grading of Recommendations Assessment, Development and Evaluation (GRADE) criteria. We planned to perform meta-analyses using risk ratio (RR) for dichotomous data and mean difference (MD) for continuous data, with their respective 95% confidence intervals (CIs). We planned to use a fixed-effect model and to explore potential causes of heterogeneity via sensitivity analyses. MAIN RESULTS: One randomised trial involving 14 preterm infants was included. There was no evidence of a clear difference between the fat-supplemented and unsupplemented groups in in-hospital rates of growth in weight (MD 0.6 g/kg/day, 95% CI -2.4 to 3.6; 1 RCT, n = 14 infants, very low-quality evidence), length (MD 0.1 cm/week, 95% CI -0.08 to 0.3; 1 RCT, n = 14 infants, very low-quality evidence) and head circumference (MD 0.2 cm/week, 95% CI -0.07 to 0.4; 1 RCT n = 14 infants, very low-quality evidence). There was no clear evidence that fat supplementation increased the risk of feeding intolerance (RR 3.0, 95% CI 0.1 to 64.3; 1 RCT, n = 16 infants, very low-quality evidence). No data were available regarding the effects of fat supplementation on long-term growth, body mass index, body composition, neurodevelopmental, or cardio-metabolic outcomes. AUTHORS' CONCLUSIONS: The one included trial suggests no evidence of an effect of fat supplementation of human milk on short-term growth and feeding intolerance in preterm infants. However, the very low-quality evidence, small sample size, few events, and low precision diminishes our confidence that these results reflect the true effect of fat supplementation of human milk in preterm infants, and no long-term outcomes were reported. Further high-quality research should evaluate the effect on short and long-term growth, neurodevelopmental and cardio-metabolic outcomes in the context of the development of multicomponent fortifiers. Optimal dosage, adverse effects, and delivery practices should also be evaluated.


Asunto(s)
Grasas de la Dieta/administración & dosificación , Suplementos Dietéticos , Fenómenos Fisiológicos Nutricionales del Lactante , Recien Nacido Prematuro/crecimiento & desarrollo , Leche Humana , Humanos , Recién Nacido
5.
PLoS Med ; 17(5): e1003122, 2020 05.
Artículo en Inglés | MEDLINE | ID: mdl-32453739

RESUMEN

BACKGROUND: Nutritional supplements may improve short-term growth of infants born small (preterm or small for gestational age), but there are few data on long-term effects and concerns that body composition may be adversely affected. Effects also may differ between girls and boys. Our systematic review and meta-analysis assessed the effects of macronutrient supplements for infants born small on later growth. METHODS AND FINDINGS: We searched OvidMedline, Embase, Cochrane CENTRAL, and Cochrane Database of Systematic Reviews from inception to January 30, 2020, and controlled-trials.com, clinicaltrials.gov, and anzctr.org.au on January 30, 2020. Randomised or quasirandomised trials were included if the intention was to increase macronutrient intake to improve growth or development of infants born small and growth was assessed after discharge. Primary outcome was body mass index (BMI) in childhood. Data were pooled using random-effect models. Outcomes were evaluated in toddlers (< 3 years), childhood (3 to 8 years), adolescence (9 to 18 years), and adulthood (>18 years). Forty randomised and 2 quasirandomised trials of variable methodological quality with 4,352 infants were included. Supplementation did not alter BMI in childhood (7 trials, 1,136 children; mean difference [MD] -0.10 kg/m2, [95% confidence interval (CI) -0.37 to 0.16], p = 0.45). In toddlers, supplementation increased weight (31 trials, 2,924 toddlers; MD 0.16 kg, [0.01 to 0.30], p = 0.03) and length/height (30 trials, 2,889 toddlers; MD 0.44 cm, [0.10 to 0.77], p = 0.01), but not head circumference (29 trials, 2,797 toddlers; MD 0.15 cm, [-0.03 to 0.33], p = 0.10). In childhood, there were no significant differences between groups in height (7 trials, 1,136 children; MD 0.22 cm, [-0.48 to 0.92], p = 0.54) or lean mass (3 trials, 354 children; MD -0.07 kg, [-0.98 to 0.85], p = 0.88), although supplemented children appeared to have higher fat mass (2 trials, 201 children; MD 0.79 kg, [0.19 to 1.38], p = 0.01). In adolescence, there were no significant differences between groups in BMI (2 trials, 216 adolescents; MD -0.48 kg/m2, [-2.05 to 1.08], p = 0.60), height (2 trials, 216 adolescents; MD -0.55 cm, [-2.95 to 1.86], p = 0.65), or fat mass (2 trials, 216 adolescents; MD -1.3 5 kg, [-5.76 to 3.06], p = 0.55). In adulthood, there also were no significant differences between groups in weight z-score (2 trials, 199 adults; MD -0.11, [-0.72 to 0.50], p = 0.73) and height z-score (2 trials, 199 adults; MD -0.07, [-0.36 to 0.22], p = 0.62). In subgroup analysis, supplementation was associated with increased length/height in toddler boys (2 trials, 173 boys; MD 1.66 cm, [0.75 to 2.58], p = 0.0003), but not girls (2 trials, 159 girls; MD 0.15 cm, [-0.71 to 1.01], p = 0.74). Limitations include considerable unexplained heterogeneity, low to very low quality of evidence, and possible bias due to low or unbalanced followup. CONCLUSIONS: In this systematic review and meta-analysis, we found no evidence that early macronutrient supplementation for infants born small altered BMI in childhood. Although supplements appeared to increase weight and length in toddlers, effects were inconsistent and unlikely to be clinically significant. Limited data suggested that supplementation increased fat mass in childhood, but these effects did not persist in later life. PROSPERO registration: CRD42019126918.


Asunto(s)
Suplementos Dietéticos , Fenómenos Fisiológicos Nutricionales del Lactante/fisiología , Recién Nacido Pequeño para la Edad Gestacional/crecimiento & desarrollo , Nutrientes/metabolismo , Adolescente , Adulto , Peso Corporal/fisiología , Niño , Ingestión de Energía/fisiología , Femenino , Edad Gestacional , Humanos , Lactante , Recién Nacido , Recien Nacido Prematuro/crecimiento & desarrollo , Parto/fisiología , Embarazo
6.
Sci Rep ; 9(1): 14715, 2019 10 11.
Artículo en Inglés | MEDLINE | ID: mdl-31605011

RESUMEN

Early macronutrient supplementation in preterm and/or small-for-gestational-age (SGA) infants may improve growth but have detrimental effects on later cardio-metabolic health which may be sex-specific. We systematically reviewed the long-term effects of early macronutrient supplementation in preterm and SGA animals and whether these differ by sex. Using Cochrane Neonatal and SYRCLE methodologies we included random or quasi-random studies that allocated non-human mammals to macronutrient supplements or no supplements between birth and weaning and assessed post-weaning outcomes. We used random-effects models to calculate standardized mean differences (SMD) with 95% confidence intervals (CIs). Six studies provided low to very-low-quality evidence that macronutrient supplementation increased weight in juvenile rats (SMD; 95% CI: 2.13; 1.00, 3.25; 1 study, n = 24), increased leptin concentrations in older adults (1.31; 0.12, 2.51; 1 study, n = 14 male rats), but decreased leptin concentrations in young adults (-1.13; -2.21, -0.05; 1 study, n = 16 female rats) and improved spatial learning and memory (qualitative data; 1 study). There was no evidence of sex-specific effects and no overall effect on length, serum lipids, body composition, HOMA-IR, or blood pressure. Macronutrient supplements may affect later growth, metabolism, and neurodevelopment of preterm and SGA animals, but evidence is limited and low quality.


Asunto(s)
Suplementos Dietéticos , Nutrientes , Ovinos/crecimiento & desarrollo , Porcinos/crecimiento & desarrollo , Animales , Animales Recién Nacidos/crecimiento & desarrollo , Peso al Nacer , Composición Corporal , Disfunción Cognitiva , Femenino , Masculino , Modelos Animales , Embarazo , Ratas , Ratas Sprague-Dawley , Tiempo
7.
PLoS Med ; 16(10): e1002952, 2019 10.
Artículo en Inglés | MEDLINE | ID: mdl-31665140

RESUMEN

BACKGROUND: Nutritional supplements may improve development of infants born small (preterm or small for gestational age [SGA]) but may increase the risk of later metabolic disease. We conducted a systematic review and meta-analysis to assess the effects of macronutrient supplements for infants born small on later development and metabolism. METHODS AND FINDINGS: We searched OvidMedline, Embase, Cochrane CENTRAL, and Cochrane Database of Systematic Reviews from inception to April 1, 2019, and controlled-trials.com, clinicaltrials.gov, and anzctr.org.au. Randomised or quasirandomised trials were included if the intention was to increase macronutrient intake to improve growth or development of infants born small and assessed post-discharge outcomes. Co-primary outcomes were cognitive impairment and metabolic risk, evaluated in toddlers (<3 years), childhood (3 to 8 years), and adolescence (9 to 18 years). Two reviewers independently extracted data. Quality was assessed using the Cochrane Risk of Bias tool, and data were pooled using random-effect models. Twenty-one randomised and one quasirandomised trial of variable methodological quality involving 3,680 infants were included. In toddlers born small, supplementation did not alter cognitive impairment (relative risk [RR] 1.00; 95% confidence interval [CI] 0.67 to 1.49; P = 0.99), and there were no differences in cognitive scores (mean difference [MD] 0.57; 95% CI -0.71 to 1.84; P = 0.38) or motor scores (MD 1.16; 95% CI -0.32 to 2.65; P = 0.12) between supplemented and unsupplemented groups. However, fewer supplemented children had motor impairment (RR 0.76; 95% CI 0.62 to 0.94; P = 0.01). In subgroup analyses, supplementation improved cognitive scores in boys (MD 5.60; 95% CI 1.07 to 10.14; P = 0.02), but not girls born small (MD -2.04; 95% CI -7.04 to 2.95; P = 0.42), and did not alter cognitive or motor scores in the subgroup of children born SGA. In childhood, there was no difference in cognitive impairment (RR 0.81; 95% CI 0.26 to 2.57; P = 0.72) or cognitive scores (MD 1.02; 95% CI -1.91 to 3.95; P = 0.50) between supplemented and unsupplemented groups. There were also no differences in blood pressure, triglyceride, and low-density lipoprotein (LDL) concentrations (all P > 0.05). However, supplemented children had lower fasting glucose (mmol/L: MD -0.20; 95% CI -0.34 to -0.06; P = 0.005) and higher high-density lipoprotein (HDL) concentrations (mmol/L: MD 0.11; 95% CI 0.02 to 0.19; P = 0.02). In subgroup analyses, there was no evidence of differences in blood pressure between supplemented and unsupplemented groups in boys or girls born small, or in SGA children. In adolescence, there was no difference between supplemented and unsupplemented groups in blood pressure, triglycerides, LDL and HDL concentrations, fasting blood glucose, insulin resistance, and fasting insulin concentrations (all P > 0.05). Limitations include considerable unexplained heterogeneity, low to very low quality of the evidence, and limited data beyond early childhood. CONCLUSIONS: In this systematic review and meta-analysis of randomised trials, we found no evidence that early macronutrient supplementation for infants born small altered later cognitive function, although there was some evidence that supplementation may decrease motor impairment in toddlers. Contrary to the findings from observational studies, evidence from randomised trials suggests that early macronutrient supplementation for infants born small improves some metabolic outcomes in childhood. PROSPERO REGISTRATION: CRD42019127858.


Asunto(s)
Discapacidades del Desarrollo/terapia , Suplementos Dietéticos , Enfermedades Metabólicas/terapia , Nutrientes , Adolescente , Niño , Preescolar , Discapacidades del Desarrollo/complicaciones , Discapacidades del Desarrollo/prevención & control , Femenino , Edad Gestacional , Humanos , Fenómenos Fisiológicos Nutricionales del Lactante , Recién Nacido , Enfermedades del Recién Nacido , Recien Nacido Prematuro , Recién Nacido Pequeño para la Edad Gestacional , Masculino , Enfermedades Metabólicas/complicaciones , Enfermedades Metabólicas/prevención & control , Embarazo , Ensayos Clínicos Controlados Aleatorios como Asunto , Resultado del Tratamiento
8.
Cochrane Database Syst Rev ; 8: CD000280, 2018 08 23.
Artículo en Inglés | MEDLINE | ID: mdl-30138549

RESUMEN

BACKGROUND: Preterm infants are born with low glycogen stores and require higher glucose intake to match fetal accretion rates. In spite of the myriad benefits of breast milk for preterm infants, it may not adequately meet the needs of these rapidly growing infants. Supplementing human milk with carbohydrates may help. However, there is a paucity of data on assessment of benefits or harms of carbohydrate supplementation of human milk to promote growth in preterm infants. This is a 2018 update of a Cochrane Review first published in 1999. OBJECTIVES: To determine whether human milk supplemented with carbohydrate compared with unsupplemented human milk fed to preterm infants improves growth, body composition, and cardio-metabolic and neurodevelopmental outcomes without significant adverse effects. SEARCH METHODS: We used the standard search strategy of the Cochrane Neonatal Review Group to search the Cochrane Central Register of Controlled Trials (CENTRAL; 2017, Issue 8), MEDLINE via PubMed (1966 to 21 February 2018), Embase (1980 to 21 February 2018), and the Cumulative Index to Nursing and Allied Health Literature (CINAHL; 1982 to 21 February 2018). We also searched clinical trials databases, conference proceedings, and reference lists of retrieved articles for randomised controlled trials (RCTs) and quasi-randomised trials. SELECTION CRITERIA: Published and unpublished controlled trials were eligible if they used random or quasi-random methods to allocate preterm infants in hospital fed human milk to supplementation or no supplementation with additional carbohydrate. DATA COLLECTION AND ANALYSIS: Two review authors independently abstracted data and assessed trial quality and the quality of evidence at the outcome level using the Grading of Recommendations Assessment, Development and Evaluation (GRADE) method. We planned to perform meta-analyses using risk ratios (RRs) for dichotomous data and mean differences (MDs) for continuous data, with their respective 95% confidence intervals (CIs). We planned to use a fixed-effect model and to explore potential causes of heterogeneity via sensitivity analyses. We contacted study authors for additional information. MAIN RESULTS: One unblinded, quasi-randomised controlled trial (RCT) assessing effects of carbohydrate supplementation of human milk in the form of a prebiotic in 75 preterm infants was eligible for inclusion in this review. We identified two publications of the same trial, which reported different methods regarding blinding and randomisation. Study authors confirmed that these publications pertain to the same trial, but they have not yet clarified which method is correct. We were unable to reproduce analyses from the data presented. At 30 days of age, the mean weight of preterm infants in the trial was greater in the prebiotic carbohydrate-supplemented group than in the unsupplemented group (MD 160.4 grams, 95% CI 12.4 to 308.4 grams; one RCT, N = 75; very low-quality evidence). We found no evidence of a clear difference in risk of feeding intolerance (RR 0.64, 95% CI 0.36 to 1.15; one RCT, N = 75 infants; very low-quality evidence) or necrotising enterocolitis (NEC) (RR 0.2, 95% CI 0.02 to 1.3; one RCT, N = 75 infants; very low-quality evidence) between the prebiotic-supplemented group and the unsupplemented group. Duration of hospital stay was shorter in the prebiotic group than in the control group at a median (range) of 16 (9 to 45) days (95% CI 15.34 to 24.09) and 25 (11 to 80) days (95% CI 25.52 to 34.39), respectively. No other data were available for assessing effects of carbohydrate supplementation on short- and long-term growth, body mass index, body composition, and neurodevelopmental or cardio-metabolic outcomes. AUTHORS' CONCLUSIONS: We found insufficient evidence on the short- and long-term effects of carbohydrate supplementation of human milk in preterm infants. The only trial included in this review presented very low-quality evidence, and study authors provided uncertain information about study methods and analysis. The evidence may be limited in its applicability because researchers included a small sample of preterm infants from a single centre. However, the outcomes assessed are common to all preterm infants, and this trial demonstrates the feasibility of prebiotic carbohydrate supplementation in upper-middle-income countries. Future trials should assess the safety and efficacy of different types and concentrations of carbohydrate supplementation for preterm infants fed human milk. Although prebiotic carbohydrate supplementation in preterm infants is currently a topic of active research, we do not envisage that further trials of digestible carbohydrates will be conducted, as this is currently done as a component of multi-nutrient human milk fortification. Hence we do not plan to publish any further updates of this review.


Asunto(s)
Carbohidratos de la Dieta/administración & dosificación , Suplementos Dietéticos , Fenómenos Fisiológicos Nutricionales del Lactante , Recien Nacido Prematuro , Leche Humana , Prebióticos/administración & dosificación , Peso Corporal , Enterocolitis Necrotizante/diagnóstico , Intolerancia Alimentaria/etiología , Crecimiento , Humanos , Recién Nacido , Leche Humana/química
9.
Cochrane Database Syst Rev ; 6: CD000433, 2018 06 22.
Artículo en Inglés | MEDLINE | ID: mdl-29931679

RESUMEN

BACKGROUND: Preterm infants require high protein intake to achieve adequate growth and development. Although breast milk feeding has many benefits for this population, the protein content is highly variable, and inadequate to support rapid infant growth. This is a 2018 update of a Cochrane Review first published in 1999. OBJECTIVES: To determine whether protein-supplemented human milk compared with unsupplemented human milk, fed to preterm infants, improves growth, body composition, cardio-metabolic, and neurodevelopmental outcomes, without significant adverse effects. SEARCH METHODS: We used the standard search strategy of Cochrane Neonatal to search CENTRAL, MEDLINE via PubMed, Embase, and CINAHL (February 2018). We also searched clinical trials databases, conference proceedings and the reference lists of retrieved articles for randomised controlled trials (RCT) and quasi-randomised trials. SELECTION CRITERIA: Published and unpublished RCTs were eligible if they used random or quasi-random methods to allocate hospitalised preterm infants who were being fed human milk, to additional protein supplementation or no supplementation. DATA COLLECTION AND ANALYSIS: Two review authors independently abstracted data, assessed risk of bias and the quality of evidence at the outcome level, using GRADE methodology. We performed meta-analyses, using risk ratio (RR) for dichotomous data, and mean difference (MD) for continuous data, with their respective 95% confidence intervals (CIs). We used a fixed-effect model and had planned to explore potential causes of heterogeneity via subgroup or sensitivity analyses. MAIN RESULTS: We included six RCTs, involving 204 preterm infants. Low-quality evidence showed that protein supplementation of human milk increased in-hospital rates of growth in weight (MD 3.82 g/kg/day, 95% CI 2.94 to 4.7; five RCTs, 101 infants; I² = 73%), length (MD 0.12 cm/wk, 95% CI 0.07 to 0.17; four RCTs, 68 infants; I² = 89%), and head circumference (MD 0.06 cm/wk, 95% CI 0.01 to 0.12; four RCTs, 68 infants; I² = 84%). There was no evidence of a clear difference in rate of growth of skin fold thickness between the supplemented and unsupplemented groups (triceps MD 0.06 mm/wk, 95% CI -0.09 to 0.21; one RCT, 20 infants; or subscapular MD 0.00 mm/wk, 95% CI -0.17 to 0.17; one RCT, 20 infants). Protein supplementation led to longer hospital stays (MD 18.5 days, 95% CI 4.39 to 32.61; one RCT, 20 infants; very low-quality evidence), and higher blood urea nitrogen concentrations compared to the unsupplemented group (MD 0.95 mmol/L, 95% CI 0.81 to 1.09; four RCTs, 81 infants; I² = 56%). Very low-quality evidence did not show that protein supplementation clearly increased the risk of feeding intolerance (RR 2.70, 95% CI 0.13 to 58.24; one RCT, 17 infants), or necrotizing enterocolitis (RR 1.11, 95% CI 0.07 to 17.12; one RCT, 76 infants), or clearly altered serum albumin concentrations (MD 2.5 g/L, 95% CI -5.66 to 10.66; one RCT, 11 infants), compared with the unsupplemented groups. No data were available about the effects of protein supplementation on long-term growth, body mass index, body composition, neurodevelopmental, or cardio-metabolic outcomes. AUTHORS' CONCLUSIONS: Low-quality evidence showed that protein supplementation of human milk, fed to preterm infants, increased short-term growth. However, the small sample sizes, low precision, and very low-quality evidence regarding duration of hospital stay, feeding intolerance, and necrotising enterocolitis precluded any conclusions about these outcomes. There were no data on outcomes after hospital discharge. Our findings may not be generalisable to low-resource settings, as none of the included studies were conducted in these settings.Since protein supplementation of human milk is now usually done as a component of multi-nutrient fortifiers, future studies should compare different amounts of protein in multi-component fortifiers, and be designed to determine the effects on duration of hospital stay and safety, as well as on long-term growth, body composition, cardio-metabolic, and neurodevelopmental outcomes.


Asunto(s)
Proteínas en la Dieta , Suplementos Dietéticos , Fenómenos Fisiológicos Nutricionales del Lactante , Recien Nacido Prematuro/crecimiento & desarrollo , Leche Humana , Humanos , Recién Nacido , Ensayos Clínicos Controlados Aleatorios como Asunto
10.
Cochrane Database Syst Rev ; 6: CD000341, 2018 06 19.
Artículo en Inglés | MEDLINE | ID: mdl-29924388

RESUMEN

BACKGROUND: As preterm infants do not experience the nutrient accretion and rapid growth phase of the third trimester of pregnancy, they are vulnerable to postnatal nutritional deficits, including of fat. Consequently, they require higher fat intakes compared to their full term counterparts to achieve adequate growth and development. Human milk fat provides the major energy needs of the preterm infant and also contributes to several metabolic and physiological functions. Although human milk has many benefits for this population, its fat content is highly variable and may be inadequate for their optimum growth and development. This is a 2018 update of a Cochrane Review last published in 2000. OBJECTIVES: To determine whether supplementation of human milk with fat compared with unsupplemented human milk fed to preterm infants improves growth, body composition, cardio-metabolic, and neurodevelopmental outcomes without significant adverse effects. SEARCH METHODS: We used the standard search strategy of Cochrane Neonatal to search the Cochrane Central Register of Controlled Trials (CENTRAL 2018, Issue 1), MEDLINE via PubMed (1966 to 08 February 2018), Embase (1980 to 08 February 2018), and CINAHL (1982 to 08 February 2018). We also searched clinical trials databases, conference proceedings, and the reference lists of retrieved articles for randomised controlled trials and quasi-randomised trials. SELECTION CRITERIA: Published and unpublished randomised controlled trials were eligible if they used random or quasi-random methods to allocate preterm infants fed human milk in hospital to supplementation or no supplementation with additional fat. DATA COLLECTION AND ANALYSIS: No new randomised controlled trials matching the selection criteria were found but we extracted data from the previously included trial due to changes in review outcomes from when the protocol was first published. Two reviewers independently abstracted data, assessed trial quality, and the quality of evidence at the outcome level using the Grading of Recommendations Assessment, Development and Evaluation (GRADE) criteria. We planned to perform meta-analyses using risk ratio (RR) for dichotomous data and mean difference (MD) for continuous data, with their respective 95% confidence intervals (CIs). We planned to use a fixed-effect model and to explore potential causes of heterogeneity via sensitivity analyses. MAIN RESULTS: One randomised trial involving 14 preterm infants was included. There was no evidence of a clear difference between the fat-supplemented and unsupplemented groups in in-hospital rates of growth in weight (MD 0.6 g/kg/day, 95% CI -2.4 to 3.6; 1 RCT, n = 14 infants, very low-quality evidence), length (MD 0.1 cm/week, 95% CI -0.08 to 0.3; 1 RCT, n = 14 infants, very low-quality evidence) and head circumference (MD 0.2 cm/week, 95% CI -0.07 to 0.4; 1 RCT n = 14 infants, very low-quality evidence). There was no clear evidence that fat supplementation increased the risk of feeding intolerance (RR 3.0, 95% CI 0.1 to 64.3; 1 RCT, n = 16 infants, very low-quality evidence). No data were available regarding the effects of fat supplementation on long-term growth, body mass index, body composition, neurodevelopmental, or cardio-metabolic outcomes. AUTHORS' CONCLUSIONS: The one included trial suggests no evidence of an effect of fat supplementation of human milk on short-term growth and feeding intolerance in preterm infants. However, the very low-quality evidence, small sample size, few events, and low precision diminishes our confidence that these results reflect the true effect of fat supplementation of human milk in preterm infants, and no long-term outcomes were reported. Further high-quality research should evaluate the effect on short and long-term growth, neurodevelopmental and cardio-metabolic outcomes in the context of the development of multicomponent fortifiers. Optimal dosage, adverse effects, and delivery practices should also be evaluated.


Asunto(s)
Grasas de la Dieta/administración & dosificación , Suplementos Dietéticos , Fenómenos Fisiológicos Nutricionales del Lactante , Recien Nacido Prematuro/crecimiento & desarrollo , Leche Humana , Humanos , Recién Nacido
11.
J Hum Lact ; 33(2): 390-400, 2017 May.
Artículo en Inglés | MEDLINE | ID: mdl-28418809

RESUMEN

BACKGROUND: Breastfeeding duration is an important indicator commonly measured in maternal and child health and nutrition research. Maternal short-term recall for both initiation and duration of breastfeeding has been shown to be valid; however, validity of long-term recall is not well understood. Research aim: This study aims to assess the validity of maternal recall of breastfeeding duration 6 years after childbirth and its association with sociodemographic factors. METHODS: Among 635 mother-child pairs, breastfeeding duration data collected monthly throughout the 1st year after childbirth in the Infant Feeding Practices Study II (IFPS II) were compared to recall data obtained 6 years later during the Year 6 Follow-Up. The intraclass correlation coefficient (ICC) and Bland-Altman plots were examined to study the agreement between the two data sets. Sociodemographic factors associated with accurate recall to within 1 month of the IFPS II breastfeeding duration were assessed using multivariable logistic regression modeling. RESULTS: Maternal recall of breastfeeding duration was found to be valid 6 years after childbirth with a small median overall bias (1 week) toward overestimation. The overall concordance was high (ICC = 0.84), except for high school graduates (ICC = 0.63) and smokers (ICC = 0.61). Smokers (adjusted odds ratio = 0.52; 95% confidence interval [0.4, 0.8]) and multiparous women (adjusted odds ratio = 0.57; 95% confidence interval [0.4, 0.9]) were also less likely to give an accurate recall of their breastfeeding duration to within 1 month. CONCLUSION: Our study found that maternal recall of breastfeeding duration varies by sociodemographic factors but is accurate 6 years after childbirth.


Asunto(s)
Lactancia Materna/psicología , Conducta Alimentaria/psicología , Recuerdo Mental , Parto/psicología , Factores de Tiempo , Adulto , Lactancia Materna/estadística & datos numéricos , Femenino , Humanos , Estudios Longitudinales , Encuestas y Cuestionarios
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA