Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
PLoS One ; 19(1): e0292170, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-38289927

RESUMEN

The goal of this study is to develop and validate a lightweight, interpretable machine learning (ML) classifier to identify opioid overdoses in emergency medical services (EMS) records. We conducted a comparative assessment of three feature engineering approaches designed for use with unstructured narrative data. Opioid overdose annotations were provided by two harm reduction paramedics and two supporting annotators trained to reliably match expert annotations. Candidate feature engineering techniques included term frequency-inverse document frequency (TF-IDF), a highly performant approach to concept vectorization, and a custom approach based on the count of empirically-identified keywords. Each feature set was trained using four model architectures: generalized linear model (GLM), Naïve Bayes, neural network, and Extreme Gradient Boost (XGBoost). Ensembles of trained models were also evaluated. The custom feature models were also assessed for variable importance to aid interpretation. Models trained using TF-IDF feature engineering ranged from AUROC = 0.59 (95% CI: 0.53-0.66) for the Naïve Bayes to AUROC = 0.76 (95% CI: 0.71-0.81) for the neural network. Models trained using concept vectorization features ranged from AUROC = 0.83 (95% 0.78-0.88)for the Naïve Bayes to AUROC = 0.89 (95% CI: 0.85-0.94) for the ensemble. Models trained using custom features were the most performant, with benchmarks ranging from AUROC = 0.92 (95% CI: 0.88-0.95) with the GLM to 0.93 (95% CI: 0.90-0.96) for the ensemble. The custom features model achieved positive predictive values (PPV) ranging for 80 to 100%, which represent substantial improvements over previously published EMS encounter opioid overdose classifiers. The application of this approach to county EMS data can productively inform local and targeted harm reduction initiatives.


Asunto(s)
Sobredosis de Droga , Servicios Médicos de Urgencia , Sobredosis de Opiáceos , Humanos , Sobredosis de Droga/diagnóstico , Sobredosis de Droga/epidemiología , Sobredosis de Droga/tratamiento farmacológico , Teorema de Bayes , Servicios Médicos de Urgencia/métodos , Aprendizaje Automático , Analgésicos Opioides/uso terapéutico
2.
Materials (Basel) ; 14(8)2021 Apr 15.
Artículo en Inglés | MEDLINE | ID: mdl-33920988

RESUMEN

Supervised learning algorithms are a recent trend for the prediction of mechanical properties of concrete. This paper presents AdaBoost, random forest (RF), and decision tree (DT) models for predicting the compressive strength of concrete at high temperature, based on the experimental data of 207 tests. The cement content, water, fine and coarse aggregates, silica fume, nano silica, fly ash, super plasticizer, and temperature were used as inputs for the models' development. The performance of the AdaBoost, RF, and DT models are assessed using statistical indices, including the coefficient of determination (R2), root mean squared error-observations standard deviation ratio (RSR), mean absolute percentage error, and relative root mean square error. The applications of the above-mentioned approach for predicting the compressive strength of concrete at high temperature are compared with each other, and also to the artificial neural network and adaptive neuro-fuzzy inference system models described in the literature, to demonstrate the suitability of using the supervised learning methods for modeling to predict the compressive strength at high temperature. The results indicated a strong correlation between experimental and predicted values, with R2 above 0.9 and RSR lower than 0.5 during the learning and testing phases for the AdaBoost model. Moreover, the cement content in the mix was revealed as the most sensitive parameter by sensitivity analysis.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...