Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 96
Filtrar
1.
Artículo en Inglés | MEDLINE | ID: mdl-38582670

RESUMEN

Aim of this study was to demonstrate the influence of different analytical procedures and techniques on the resulting miRNA expression profile in healthy control subjects and tumor patients using the oral squamous cell carcinoma (OSCC) model and to demonstrate the technical and biological reproducibility. Body fluids such as saliva are suitable for non-invasive miRNA analysis because ubiquitously circulating miRNA can be found in them. It was technically possible to distinguish between healthy and diseased samples based on the miRNA expression profile found. Regardless of the methodology used, good technical reproducibility of the results seems to be achievable. On the other hand, biological reproducibility was inadequate, which is why prompt sampling and sequencing is recommended. The data indicate that malignant lesions can be detected using miRNA signatures extracted from saliva. This could stimulate further research to establish standardized protocols and kits for sample collection, miRNA extraction, sequencing and interpretation of results.

2.
Histol Histopathol ; : 18731, 2024 Mar 07.
Artículo en Inglés | MEDLINE | ID: mdl-38529720

RESUMEN

INTRODUCTION: Lung cancer is a major cause of cancer-related death worldwide and effective therapies, besides surgery, are available only for a small proportion of patients. Since cellular respiration is known to be broadly altered in malignant tumors, the cellular processes of respiration can be a potential therapeutic target. One important element of cellular respiration is creatine and its transport by the creatine transporter SLC6A8. Here we describe the expression of SLC6A8 at the RNA and protein level, epigenetic modifications as well as survival analysis in NSCLC tissues and matched controls. MATERIALS AND METHODS: We analyzed epigenetic modifications of the SLC68A gene in 32 patients, of which 18 were additionally analyzed by transcriptome analysis. The expression of SLC6A8 at the protein level was assessed by immunohistochemistry using an independent cohort and correlated with clinicopathological data including survival. Kaplan-Meier analysis was performed to analyze the possible effects of the transcriptional levels of SLC6A8 in another separate cohort (n=1925). RESULTS: SLC6A8 loci are epigenetically modified in NSCLC compared with tumor-free controls. SLC6A8 is upregulated in NSCLC at the RNA and protein level. High mRNA expression of SLC6A8 was associated with an overall poor prognosis in lung adenocarcinoma patients and displayed the strongest adverse prognostic effect in male smokers with adenocarcinomas. Results of transcriptome analysis were partially confirmed at the protein level. CONCLUSIONS: Our results suggest an important role of creatine and its transport via SLC6A8 in NSCLC.

3.
Heliyon ; 10(1): e23688, 2024 Jan 15.
Artículo en Inglés | MEDLINE | ID: mdl-38192829

RESUMEN

Brachyolmia is a heterogeneous group of developmental disorders characterized by a short trunk, short stature, scoliosis, and generalized platyspondyly without significant deformities in the long bones. DASS (Dental Abnormalities and Short Stature), caused by alterations in the LTBP3 gene, was previously considered as a subtype of brachyolmia. The present study investigated three unrelated consanguineous families (A, B, C) with Brachyolmia and DASS from Egypt and Pakistan. In our Egyptian patients, we also observed hearing impairment. Exome sequencing was performed to determine the genetic causes of the diverse clinical conditions in the patients. Exome sequencing identified a novel homozygous splice acceptor site variant (LTBP3:c.3629-1G > T; p. ?) responsible for DASS phenotypes and a known homozygous missense variant (CABP2: c.590T > C; p.Ile197Thr) causing hearing impairment in the Egyptian patients. In addition, two previously reported homozygous frameshift variants (LTBP3:c.132delG; p.Pro45Argfs*25) and (LTBP3:c.2216delG; p.Gly739Alafs*7) were identified in Pakistani patients. This study emphasizes the vital role of LTBP3 in the axial skeleton and tooth morphogenesis and expands the mutational spectrum of LTBP3. We are reporting LTBP3 variants in seven patients of three families, majorly causing brachyolmia with dental and cardiac anomalies. Skeletal assessment documented short webbed neck, broad chest, evidences of mild long bones involvement, short distal phalanges, pes planus and osteopenic bone texture as additional associated findings expanding the clinical phenotype of DASS. The current study reveals that the hearing impairment phenotype in Egyptian patients of family A has a separate transmission mechanism independent of LTBP3.

4.
Discov Oncol ; 14(1): 181, 2023 Oct 03.
Artículo en Inglés | MEDLINE | ID: mdl-37787775

RESUMEN

BACKGROUND: Lung cancer (LC) causes more deaths worldwide than any other cancer type. Despite advances in therapeutic strategies, the fatality rate of LC cases remains high (95%) since the majority of patients are diagnosed at late stages when patient prognosis is poor. Analysis of the International Association for the Study of Lung Cancer (IASLC) database indicates that early diagnosis is significantly associated with favorable outcome. However, since symptoms of LC at early stages are unspecific and resemble those of benign pathologies, current diagnostic approaches are mostly initiated at advanced LC stages. METHODS: We developed a LC diagnosis test based on the analysis of distinct RNA isoforms expressed from the GATA6 and NKX2-1 gene loci, which are detected in exhaled breath condensates (EBCs). Levels of these transcript isoforms in EBCs were combined to calculate a diagnostic score (the LC score). In the present study, we aimed to confirm the applicability of the LC score for the diagnosis of early stage LC under clinical settings. Thus, we evaluated EBCs from patients with early stage, resectable non-small cell lung cancer (NSCLC), who were prospectively enrolled in the EMoLung study at three sites in Germany. RESULTS: LC score-based classification of EBCs confirmed its performance under clinical conditions, achieving a sensitivity of 95.7%, 91.3% and 84.6% for LC detection at stages I, II and III, respectively. CONCLUSIONS: The LC score is an accurate and non-invasive option for early LC diagnosis and a valuable complement to LC screening procedures based on computed tomography.

5.
Clin Epigenetics ; 15(1): 145, 2023 09 08.
Artículo en Inglés | MEDLINE | ID: mdl-37684676

RESUMEN

BACKGROUND: Epigenetic mechanisms are informational cellular processes instructing normal and diseased phenotypes. They are associated with DNA but without altering the DNA sequence. Whereas chemical processes like DNA methylation or histone modifications are well-accepted epigenetic mechanisms, we herein propose the existence of an additional quantum physics layer of epigenetics. RESULTS: We base our hypothesis on theoretical and experimental studies showing quantum phenomena to be active in double-stranded DNA, even under ambient conditions. These phenomena include coherent charge transfer along overlapping pi-orbitals of DNA bases and chirality-induced spin selectivity. Charge transfer via quantum tunneling mediated by overlapping orbitals results in charge delocalization along several neighboring bases, which can even be extended by classical (non-quantum) electron hopping. Such charge transfer is interrupted by flipping base(s) out of the double-strand e.g., by DNA modifying enzymes. Charge delocalization can directly alter DNA recognition by proteins or indirectly by DNA structural changes e.g., kinking. Regarding sequence dependency, charge localization, shown to favor guanines, could influence or even direct epigenetic changes, e.g., modification of cytosines in CpG dinucleotides. Chirality-induced spin selectivity filters electrons for their spin along DNA and, thus, is not only an indicator for quantum coherence but can potentially affect DNA binding properties. CONCLUSIONS: Quantum effects in DNA are prone to triggering and manipulation by external means. By the hypothesis put forward here, we would like to foster research on "Quantum Epigenetics" at the interface of medicine, biology, biochemistry, and physics to investigate the potential epigenetic impact of quantum physical principles on (human) life.


Asunto(s)
Citosina , Metilación de ADN , Humanos , ADN , Epigénesis Genética , Epigenómica
6.
Hum Reprod ; 38(10): 2028-2038, 2023 Oct 03.
Artículo en Inglés | MEDLINE | ID: mdl-37553222

RESUMEN

STUDY QUESTION: In children affected by rhabdoid tumors (RT), are there clinical, therapeutic, and/or (epi-)genetic differences between those conceived following ART compared to those conceived without ART? SUMMARY ANSWER: We detected a significantly elevated female predominance, and a lower median age at diagnosis, of children with RT conceived following ART (RT_ART) as compared to other children with RT. WHAT IS KNOWN ALREADY: Anecdotal evidence suggests an association of ART with RT. STUDY DESIGN, SIZE, DURATION: This was a multi-institutional retrospective survey. Children with RT conceived by ART were identified in our EU-RHAB database (n = 11/311 children diagnosed between January 2010 and January 2018) and outside the EU-RHAB database (n = 3) from nine different countries. A population-representative German EU-RHAB control cohort of children with RTs conceived without ART (n = 211) (EU-RHAB control cohort) during the same time period was used as a control cohort for clinical, therapeutic, and survival analyses. The median follow-up time was 11.5 months (range 0-120 months) for children with RT_ART and 18.5 months (range 0-153 months) for the EU-RHAB control cohort. PARTICIPANTS/MATERIALS, SETTING, METHODS: We analyzed 14 children with RT_ART diagnosed from January 2010 to January 2018. We examined tumors and matching blood samples for SMARCB1 mutations and copy number alterations using FISH, multiplex ligation-dependent probe amplification, and DNA sequencing. DNA methylation profiling of tumor and/or blood samples was performed using DNA methylation arrays and compared to respective control cohorts of similar age (n = 53 tumors of children with RT conceived without ART, and n = 38 blood samples of children with no tumor born small for gestational age). MAIN RESULTS AND THE ROLE OF CHANCE: The median age at diagnosis of 14 individuals with RT_ART was 9 months (range 0-66 months), significantly lower than the median age of patients with RT (n = 211) in the EU-RHAB control cohort (16 months (range 0-253), P = 0.03). A significant female predominance was observed in the RT_ART cohort (M:F ratio: 2:12 versus 116:95 in EU-RHAB control cohort, P = 0.004). Eight of 14 RT_ART patients were diagnosed with atypical teratoid rhabdoid tumor, three with extracranial, extrarenal malignant rhabdoid tumor, one with rhabdoid tumor of the kidney and two with synchronous tumors. The location of primary tumors did not differ significantly in the EU-RHAB control cohort (P = 0.27). Six of 14 RT_ART patients presented with metastases at diagnosis. Metastatic stage was not significantly different from that within the EU-RHAB control cohort (6/14 vs 88/211, P = 1). The incidence of pathogenic germline variants was five of the 12 tested RT_ART patients and, thus, not significantly different from the EU-RHAB control cohort (5/12 versus 36/183 tested, P = 0.35). The 5-year overall survival (OS) and event free survival (EFS) rates of RT_ART patients were 42.9 ± 13.2% and 21.4 ± 11%, respectively, and thus comparable to the EU-RHAB control cohort (OS 41.1 ± 3.5% and EFS 32.1 ± 3.3). We did not find other clinical, therapeutic, outcome factors distinguishing patients with RT_ART from children with RTs conceived without ART (EU-RHAB control cohort). DNA methylation analyses of 10 tumors (atypical teratoid RT = 6, extracranial, extrarenal malignant RT = 4) and six blood samples from RT_ART patients showed neither evidence of a general DNA methylation difference nor underlying imprinting defects, respectively, when compared to a control group (n = 53 RT samples of patients without ART, P = 0.51, n = 38 blood samples of patients born small for gestational age, P = 0.1205). LIMITATIONS, REASONS FOR CAUTION: RTs are very rare malignancies and our results are based on a small number of children with RT_ART. WIDER IMPLICATIONS OF THE FINDINGS: This cohort of patients with RT_ART demonstrated a marked female predominance, and a rather low median age at diagnosis even for RTs. Other clinical, treatment, outcome, and molecular factors did not differ from those conceived without ART (EU-RHAB control cohort) or reported in other series, and there was no evidence for imprinting defects. Long-term survival is achievable even in cases with pathogenic germline variants, metastatic disease at diagnosis, or relapse. The female preponderance among RT_ART patients is not yet understood and needs to be evaluated, ideally in larger international series. STUDY FUNDING/COMPETING INTEREST(S): M.C.F. is supported by the 'Deutsche Kinderkrebsstiftung' DKS 2020.10, by the 'Deutsche Forschungsgemeinschaft' DFG FR 1516/4-1 and by the Deutsche Krebshilfe 70113981. R.S. received grant support by Deutsche Krebshilfe 70114040 and for infrastructure by the KinderKrebsInitiative Buchholz/Holm-Seppensen. P.D.J. is supported by the Else-Kroener-Fresenius Stiftung and receives a Max-Eder scholarship from the Deutsche Krebshilfe. M.H. is supported by DFG (HA 3060/8-1) and IZKF Münster (Ha3/017/20). BB is supported by the 'Deutsche Kinderkrebsstiftung' DKS 2020.05. We declare no competing interests. TRIAL REGISTRATION NUMBER: N/A.

8.
Epigenet Insights ; 16: 25168657231172159, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-37152709

RESUMEN

ALS is a fatal motor neuron disease that displays a broad variety of phenotypes ranging from early fatal courses to slowly progressing and rather benign courses. Such divergence can also be seen in genetic ALS cases with varying phenotypes bearing specific mutations, suggesting epigenetic mechanisms like DNA methylation act as disease modifiers. However, the epigenotype dictated by, in addition to other mechanisms, DNA methylation is also strongly influenced by the individual's genotype. Hence, we performed a DNA methylation study using EPIC arrays on 7 monozygotic (MZ) twin pairs discordant for ALS in whole blood, which serves as an ideal model for eliminating the effects of the genetic-epigenetic interplay to a large extent. We found one CpG site showing intra-pair hypermethylation in the affected co-twins, which maps to the Glutamate Ionotropic Receptor Kainate Type Subunit 1 gene (GRIK1). Additionally, we found 4 DMPs which were subsequently confirmed using 2 different statistical approaches. Differentially methylated regions or blocks could not be detected within the scope of this work. In conclusion, we revealed that despite a low sample size, monozygotic twin studies discordant for the disease can bring new insights into epigenetic processes in ALS, pointing to new target loci for further investigations.

9.
Nat Commun ; 14(1): 309, 2023 01 19.
Artículo en Inglés | MEDLINE | ID: mdl-36658118

RESUMEN

Richter syndrome (RS) is the transformation of chronic lymphocytic leukemia (CLL) into aggressive lymphoma, most commonly diffuse large B-cell lymphoma (DLBCL). We characterize 58 primary human RS samples by genome-wide DNA methylation and whole-transcriptome profiling. Our comprehensive approach determines RS DNA methylation profile and unravels a CLL epigenetic imprint, allowing CLL-RS clonal relationship assessment without the need of the initial CLL tumor DNA. DNA methylation- and transcriptomic-based classifiers were developed, and testing on landmark DLBCL datasets identifies a poor-prognosis, activated B-cell-like DLBCL subset in 111/1772 samples. The classification robustly identifies phenotypes very similar to RS with a specific genomic profile, accounting for 4.3-8.3% of de novo DLBCLs. In this work, RS multi-omics characterization determines oncogenic mechanisms, establishes a surrogate marker for CLL-RS clonal relationship, and provides a clinically relevant classifier for a subset of primary "RS-type DLBCL" with unfavorable prognosis.


Asunto(s)
Leucemia Linfocítica Crónica de Células B , Linfoma de Células B Grandes Difuso , Humanos , Leucemia Linfocítica Crónica de Células B/genética , Leucemia Linfocítica Crónica de Células B/patología , Linfoma de Células B Grandes Difuso/genética , Linfoma de Células B Grandes Difuso/patología , Linfocitos B/patología , Metilación de ADN/genética
10.
Haematologica ; 108(2): 543-554, 2023 02 01.
Artículo en Inglés | MEDLINE | ID: mdl-35522148

RESUMEN

Histone methylation-modifiers, such as EZH2 and KMT2D, are recurrently altered in B-cell lymphomas. To comprehensively describe the landscape of alterations affecting genes encoding histone methylation-modifiers in lymphomagenesis we investigated whole genome and transcriptome data of 186 mature B-cell lymphomas sequenced in the ICGC MMML-Seq project. Besides confirming common alterations of KMT2D (47% of cases), EZH2 (17%), SETD1B (5%), PRDM9 (4%), KMT2C (4%), and SETD2 (4%), also identified by prior exome or RNA-sequencing studies, we here found recurrent alterations to KDM4C in chromosome 9p24, encoding a histone demethylase. Focal structural variation was the main mechanism of KDM4C alterations, and was independent from 9p24 amplification. We also identified KDM4C alterations in lymphoma cell lines including a focal homozygous deletion in a classical Hodgkin lymphoma cell line. By integrating RNA-sequencing and genome sequencing data we predict that KDM4C structural variants result in loss-offunction. By functional reconstitution studies in cell lines, we provide evidence that KDM4C can act as a tumor suppressor. Thus, we show that identification of structural variants in whole genome sequencing data adds to the comprehensive description of the mutational landscape of lymphomas and, moreover, establish KDM4C as a putative tumor suppressive gene recurrently altered in subsets of B-cell derived lymphomas.


Asunto(s)
Linfoma de Células B , Linfoma , Humanos , Histonas/metabolismo , Histona Demetilasas/genética , Homocigoto , Eliminación de Secuencia , Linfoma/genética , Linfoma de Células B/genética , Secuenciación Completa del Genoma , ARN , Histona Demetilasas con Dominio de Jumonji/genética , Histona Demetilasas con Dominio de Jumonji/química , Histona Demetilasas con Dominio de Jumonji/metabolismo , N-Metiltransferasa de Histona-Lisina/genética
11.
Oncol Rep ; 48(2)2022 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-35730629

RESUMEN

Although chronic myeloid leukemia (CML) can be effectively treated using BCR­ABL1 kinase inhibitors, resistance due to kinase alterations or to BCR­ABL1 independent mechanisms remain a therapeutic challenge. For the latter, the underlying mechanisms are widely discussed; for instance, gene expression changes, epigenetic factors and alternative signaling pathway activation. In the present study, in vitro­CML cell models of resistance against the tyrosine kinase inhibitors (TKIs) imatinib (0.5 and 2 µM) and nilotinib (0.1 µM) with biological replicates were generated to identify novel mechanisms of resistance. Subsequently, genome­wide mRNA expression and DNA methylation were analyzed. While mRNA expression patterns differed largely between biological replicates, there was an overlap of 71 genes differentially expressed between cells resistant against imatinib or nilotinib. Moreover, all TKI resistant cell lines demonstrated a slight hypermethylation compared with native cells. In a combined analysis of 151 genes differentially expressed in the biological replicates of imatinib resistance, cell adhesion signaling, in particular the cellular matrix protein fibronectin 1 (FN1), was significantly dysregulated. This gene was also downregulated in nilotinib resistance. Further analyses showed significant FN1­downregulation in imatinib resistance on mRNA (P<0.001) and protein level (P<0.001). SiRNA­mediated FN1­knockdown in native cells reduced cell adhesion (P=0.02), decreased imatinib susceptibility visible by higher Ki­67 expression (1.5­fold, P=0.04) and increased cell number (1.5­fold, P=0.03). Vice versa, recovery of FN1­expression in imatinib resistant cells was sufficient to partially restore the response to imatinib. Overall, these results suggested a role of cell adhesion signaling and fibronectin 1 in TKI resistant CML and a potential target for novel strategies in treatment of resistant CML.


Asunto(s)
Fibronectinas , Leucemia Mielógena Crónica BCR-ABL Positiva , Adhesión Celular/genética , Resistencia a Antineoplásicos/genética , Fibronectinas/genética , Fibronectinas/metabolismo , Proteínas de Fusión bcr-abl/genética , Proteínas de Fusión bcr-abl/metabolismo , Humanos , Mesilato de Imatinib/farmacología , Mesilato de Imatinib/uso terapéutico , Leucemia Mielógena Crónica BCR-ABL Positiva/tratamiento farmacológico , Leucemia Mielógena Crónica BCR-ABL Positiva/genética , Leucemia Mielógena Crónica BCR-ABL Positiva/metabolismo , Metilación , Inhibidores de Proteínas Quinasas/farmacología , Inhibidores de Proteínas Quinasas/uso terapéutico , ARN Mensajero/metabolismo , Transducción de Señal
12.
Neurobiol Aging ; 116: 16-24, 2022 08.
Artículo en Inglés | MEDLINE | ID: mdl-35537341

RESUMEN

Amyotrophic lateral sclerosis (ALS) is a fatal motoneuron disease with a monogenic cause in approximately 10% of cases. However, familial clustering of disease without inheritance in a Mendelian manner and the broad range of phenotypes suggest the presence of epigenetic mechanisms. Hence, we performed an epigenome-wide association study on sporadic, symptomatic and presymptomatic familial ALS cases with mutations in C9ORF72 and FUS and healthy controls studying DNA methylation in blood cells. We found differentially methylated DNA positions (DMPs) and regions embedding DMPs associated with either disease status, C9ORF72 or FUS mutation status. One DMP reached methylome-wide significance and is attributed to a region encoding a long non-coding RNA (LOC389247). Furthermore, we could demonstrate co-localization of DMPs with an ALS-associated GWAS region near the SCN7A/SCN9A and XIRP2 genes. Finally, a classifier model that predicts disease status (ALS, healthy) classified all but one presymptomatic mutation carrier as healthy, suggesting that the presence of ALS symptoms rather than the presence of ALS-associated genetic mutations is associated with blood cell DNA methylation.


Asunto(s)
Esclerosis Amiotrófica Lateral , Esclerosis Amiotrófica Lateral/genética , Células Sanguíneas , Proteína C9orf72/genética , Epigenoma , Humanos , Mutación/genética , Canal de Sodio Activado por Voltaje NAV1.7/genética , Proteína FUS de Unión a ARN/genética
13.
Nutr Metab Cardiovasc Dis ; 32(6): 1502-1510, 2022 06.
Artículo en Inglés | MEDLINE | ID: mdl-35450790

RESUMEN

BACKGROUND AND AIM: Childhood obesity is an emerging problem often leading to earlier onset of non-communicable diseases in later life. Biomarkers to identify individual risk scores are insufficient in routine clinical practice, which is related to the need for easily sampled, non-invasive survey methods in children. We aimed to investigate and strengthen possible pro-inflammatory markers and epigenetic risk factors in saliva of obese children compared to lean controls. METHODS AND RESULTS: 19 overweight/obese (OC, 10.1 ± 1.9 years, BMI 27.7 ± 3.2 kg/m2) and 19 lean control children (CC, 9.7 ± 2.5 years, BMI 16.4 ± 1.8 kg/m2) participated in this explorative pilot study. Anthropometric measures, saliva and cheek swab samples were taken. Saliva profiles were examined for acute phase proteins (CRP and neopterin) and pro-inflammatory cytokines (IL-17a/IL-1ß/IL-6). Cheek swabs were analyzed to investigate DNA methylation differences with subsequent hierarchical cluster and principal component analyses (PCA). Saliva analysis showed significant increased CRP concentrations in OC compared to CC (p < 0.001). There were no significant differences, but high intra-individual values in neopterin, IL-17a, IL-1ß and IL-6. An unsupervised PCA of CpG loci with high variance (σ/σmax > 0.2) clearly separated OC and CC according to their methylation pattern. Furthermore, a supervised approach revealed 7125 significantly differentially methylated loci, whose corresponding genes were significantly enriched for genes playing roles in e.g., cellular signalling, cytoskeleton organization and cell motility. CONCLUSIONS: CRP and methylation status determinations in saliva are suitable as non-invasive methods for early detection of risks for non-communicable diseases in children/adolescents and might be a useful supplementary approach in the routine clinical practice/monitoring.


Asunto(s)
Enfermedades no Transmisibles , Obesidad Infantil , Adolescente , Biomarcadores/metabolismo , Niño , Marcadores Genéticos , Humanos , Interleucina-17/genética , Interleucina-17/metabolismo , Interleucina-6/genética , Interleucina-6/metabolismo , Neopterin/genética , Neopterin/metabolismo , Obesidad Infantil/diagnóstico , Obesidad Infantil/epidemiología , Obesidad Infantil/genética , Proyectos Piloto , Saliva/metabolismo
14.
Dev Psychopathol ; 34(3): 864-874, 2022 08.
Artículo en Inglés | MEDLINE | ID: mdl-33461631

RESUMEN

DNA methylation of the elongation of very long chain fatty acids protein 2 (ELOVL2) was suggested as a biomarker of biological aging, while childhood maltreatment (CM) has been associated with accelerated biological aging. We investigated the association of age and CM experiences with ELOVL2 methylation in peripheral blood mononuclear cells (PBMC). Furthermore, we investigated ELOVL2 methylation in the umbilical cord blood mononuclear cells (UBMC) of newborns of mothers with and without CM. PBMC and UBMC were isolated from 113 mother-newborn dyads and genomic DNA was extracted. Mothers with and without CM experiences were recruited directly postpartum. Mass array spectrometry and pyrosequencing were used for methylation analyses of ELOVL2 intron 1, and exon 1 and 5' end, respectively. ELOVL2 5' end and intron 1 methylation increased with higher age but were not associated with CM experiences. On the contrary, overall ELOVL2 exon 1 methylation increased with higher CM, but these changes were minimal and did not increase with age. Maternal CM experiences and neonatal methylation of ELOVL2 intron 1 or exon 1 were not significantly correlated. Our study suggests region-specific effects of chronological age and experienced CM on ELOVL2 methylation and shows that the epigenetic biomarker for age within the ELOVL2 gene does not show accelerated biological aging years after CM exposure.


Asunto(s)
Maltrato a los Niños , Metilación de ADN , Envejecimiento , Niño , Elongasas de Ácidos Grasos/genética , Femenino , Humanos , Recién Nacido , Leucocitos Mononucleares
15.
Leukemia ; 35(7): 2002-2016, 2021 07.
Artículo en Inglés | MEDLINE | ID: mdl-33953289

RESUMEN

B cells have the unique property to somatically alter their immunoglobulin (IG) genes by V(D)J recombination, somatic hypermutation (SHM) and class-switch recombination (CSR). Aberrant targeting of these mechanisms is implicated in lymphomagenesis, but the mutational processes are poorly understood. By performing whole genome and transcriptome sequencing of 181 germinal center derived B-cell lymphomas (gcBCL) we identified distinct mutational signatures linked to SHM and CSR. We show that not only SHM, but presumably also CSR causes off-target mutations in non-IG genes. Kataegis clusters with high mutational density mainly affected early replicating regions and were enriched for SHM- and CSR-mediated off-target mutations. Moreover, they often co-occurred in loci physically interacting in the nucleus, suggesting that mutation hotspots promote increased mutation targeting of spatially co-localized loci (termed hypermutation by proxy). Only around 1% of somatic small variants were in protein coding sequences, but in about half of the driver genes, a contribution of B-cell specific mutational processes to their mutations was found. The B-cell-specific mutational processes contribute to both lymphoma initiation and intratumoral heterogeneity. Overall, we demonstrate that mutational processes involved in the development of gcBCL are more complex than previously appreciated, and that B cell-specific mutational processes contribute via diverse mechanisms to lymphomagenesis.


Asunto(s)
Genoma/genética , Centro Germinal/metabolismo , Linfoma de Células B/genética , Mutación/genética , Adulto , Linfocitos B/metabolismo , Línea Celular , Línea Celular Tumoral , Genes de Inmunoglobulinas/genética , Células HeLa , Células Hep G2 , Células Endoteliales de la Vena Umbilical Humana , Humanos , Cambio de Clase de Inmunoglobulina/genética , Células K562 , Células MCF-7 , Hipermutación Somática de Inmunoglobulina/genética , Recombinación V(D)J/genética
16.
Sci Rep ; 11(1): 9532, 2021 05 05.
Artículo en Inglés | MEDLINE | ID: mdl-33953302

RESUMEN

The only potentially curative treatment for lung adenocarcinoma patients remains complete resection of early-stage tumors. However, many patients develop recurrence and die of their disease despite curative surgery. Underlying mechanisms leading to establishment of systemic disease after complete resection are mostly unknown. We therefore aimed at identifying molecular signatures of resected lung adenocarcinomas associated with the risk of an early relapse. The study comprised 89 patients with totally resected stage IA-IIIA lung adenocarcinomas. Patients suffering from an early relapse within two years after surgery were compared to patients without a relapse in two years. Patients were clinically and molecular pathologically characterized. Tumor tissues were immunohistochemically analyzed for the expression of Ki67, CD45, CD4, CD8, PD1, PD-L1, PD-L2 and CD34, by Nanostring nCounter PanCancer Immune Profiling Panel as well as a comprehensive methylome profiling using the Infinium MethylationEPIC BeadChip. We detected differential DNA methylation patterns as well as significantly differentially expressed genes associated with an early relapse after complete resection. Especially, CD1A was identified as a potential biomarker, whose reduced expression is associated with an early relapse. These findings might help to develop biomarkers improving risk assessment and patient selection for adjuvant therapy as well as establish novel targeted therapeutic strategies.


Asunto(s)
Adenocarcinoma del Pulmón/genética , Neoplasias Pulmonares/genética , Recurrencia Local de Neoplasia/genética , Adenocarcinoma del Pulmón/cirugía , Biomarcadores de Tumor/genética , Metilación de ADN , Epigenoma , Regulación Neoplásica de la Expresión Génica , Humanos , Neoplasias Pulmonares/cirugía , Transcriptoma
17.
Clin Epigenetics ; 13(1): 38, 2021 02 17.
Artículo en Inglés | MEDLINE | ID: mdl-33596996

RESUMEN

BACKGROUND: Lung cancer is the leading cause of cancer-related death in most western countries in both, males and females, accounting for roughly 20-25% of all cancer deaths. For choosing the most appropriate therapy regimen a definite diagnosis is a prerequisite. However, histological characterization of bronchoscopic biopsies particularly with low tumor cell content is often challenging. Therefore, this study aims at (a) determining the value of DNA methylation analysis applied to specimens obtained by bronchoscopic biopsy for the diagnosis of lung cancer and (b) at comparing aberrantly CpG loci identified in bronchoscopic biopsy with those identified by analyzing surgical specimens. RESULTS: We report the HumanMethylation450-based DNA methylation analysis of paired samples of bronchoscopic biopsy specimens either from the tumor side or from the contralateral tumor-free bronchus in 37 patients with definite lung cancer diagnosis and 18 patients with suspicious diagnosis. A differential DNA methylation analysis between both biopsy sites of patients with definite diagnosis identified 1303 loci. Even those samples were separated by the set of 1303 loci in which histopathological analysis could not unambiguously define the dignity. Further differential DNA methylation analyses distinguished between SCLC and NSCLC. We validated our results in an independent cohort of 40 primary lung cancers obtained by open surgical resection and their corresponding controls from the same patient as well as in publically available DNA methylation data from a TCGA cohort which could also be classified with high accuracy. CONCLUSIONS: Considering that the prognosis correlates with tumor stage at time of diagnosis, early detection of lung cancer is vital and DNA methylation analysis might add valuable information to reliably characterize lung cancer even in histologically ambiguous sample material.


Asunto(s)
Biopsia/métodos , Metilación de ADN , Neoplasias Pulmonares/diagnóstico , Neoplasias Pulmonares/genética , Broncoscopía/métodos , Carcinoma de Pulmón de Células no Pequeñas/diagnóstico , Carcinoma de Pulmón de Células no Pequeñas/genética , Estudios de Casos y Controles , Estudios de Cohortes , Islas de CpG , Diagnóstico Diferencial , Detección Precoz del Cáncer/métodos , Epigenoma/genética , Epigenómica , Femenino , Humanos , Neoplasias Pulmonares/patología , Neoplasias Pulmonares/cirugía , Masculino , Estadificación de Neoplasias/métodos , Pronóstico , Carcinoma Pulmonar de Células Pequeñas/diagnóstico , Carcinoma Pulmonar de Células Pequeñas/genética
19.
Respir Res ; 21(1): 274, 2020 Oct 19.
Artículo en Inglés | MEDLINE | ID: mdl-33076907

RESUMEN

BACKGROUND: To date, most studies involving high-throughput analyses of sputum in asthma and COPD have focused on identifying transcriptomic signatures of disease. No whole-genome methylation analysis of sputum cells has been performed yet. In this context, the highly variable cellular composition of sputum has potential to confound the molecular analyses. METHODS: Whole-genome transcription (Agilent Human 4 × 44 k array) and methylation (Illumina 450 k BeadChip) analyses were performed on sputum samples of 9 asthmatics, 10 healthy and 10 COPD subjects. RNA integrity was checked by capillary electrophoresis and used to correct in silico for bias conferred by RNA degradation during biobank sample storage. Estimates of cell type-specific molecular profiles were derived via regression by quadratic programming based on sputum differential cell counts. All analyses were conducted using the open-source R/Bioconductor software framework. RESULTS: A linear regression step was found to perform well in removing RNA degradation-related bias among the main principal components of the gene expression data, increasing the number of genes detectable as differentially expressed in asthma and COPD sputa (compared to controls). We observed a strong influence of the cellular composition on the results of mixed-cell sputum analyses. Exemplarily, upregulated genes derived from mixed-cell data in asthma were dominated by genes predominantly expressed in eosinophils after deconvolution. The deconvolution, however, allowed to perform differential expression and methylation analyses on the level of individual cell types and, though we only analyzed a limited number of biological replicates, was found to provide good estimates compared to previously published data about gene expression in lung eosinophils in asthma. Analysis of the sputum methylome indicated presence of differential methylation in genomic regions of interest, e.g. mapping to a number of human leukocyte antigen (HLA) genes related to both major histocompatibility complex (MHC) class I and II molecules in asthma and COPD macrophages. Furthermore, we found the SMAD3 (SMAD family member 3) gene, among others, to lie within differentially methylated regions which has been previously reported in the context of asthma. CONCLUSIONS: In this methodology-oriented study, we show that methylation profiling can be easily integrated into sputum analysis workflows and exhibits a strong potential to contribute to the profiling and understanding of pulmonary inflammation. Wherever RNA degradation is of concern, in silico correction can be effective in improving both sensitivity and specificity of downstream analyses. We suggest that deconvolution methods should be integrated in sputum omics analysis workflows whenever possible in order to facilitate the unbiased discovery and interpretation of molecular patterns of inflammation.


Asunto(s)
Asma/genética , Epigenoma/fisiología , Perfilación de la Expresión Génica/métodos , Enfermedad Pulmonar Obstructiva Crónica/genética , Esputo/fisiología , Adulto , Anciano , Asma/diagnóstico , Asma/metabolismo , Femenino , Ensayos Analíticos de Alto Rendimiento/métodos , Humanos , Masculino , Persona de Mediana Edad , Análisis por Matrices de Proteínas/métodos , Enfermedad Pulmonar Obstructiva Crónica/diagnóstico , Enfermedad Pulmonar Obstructiva Crónica/metabolismo , Análisis de Secuencia de ARN/métodos , Esputo/química
20.
Nat Biotechnol ; 37(12): 1478-1481, 2019 12.
Artículo en Inglés | MEDLINE | ID: mdl-31740840

RESUMEN

Expansions of short tandem repeats are genetic variants that have been implicated in several neuropsychiatric and other disorders, but their assessment remains challenging with current polymerase-based methods1-4. Here we introduce a CRISPR-Cas-based enrichment strategy for nanopore sequencing combined with an algorithm for raw signal analysis. Our method, termed STRique for short tandem repeat identification, quantification and evaluation, integrates conventional sequence mapping of nanopore reads with raw signal alignment for the localization of repeat boundaries and a hidden Markov model-based repeat counting mechanism. We demonstrate the precise quantification of repeat numbers in conjunction with the determination of CpG methylation states in the repeat expansion and in adjacent regions at the single-molecule level without amplification. Our method enables the study of previously inaccessible genomic regions and their epigenetic marks.


Asunto(s)
Metilación de ADN/genética , Genómica/métodos , Repeticiones de Microsatélite/genética , Secuenciación de Nanoporos/métodos , Algoritmos , Esclerosis Amiotrófica Lateral/genética , Proteína C9orf72/genética , Sistemas CRISPR-Cas/genética , Células Cultivadas , Humanos , Nanoporos
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...