Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Más filtros











Base de datos
Intervalo de año de publicación
1.
Cancer ; 125(12): 1963-1972, 2019 06 15.
Artículo en Inglés | MEDLINE | ID: mdl-30835824

RESUMEN

Substantial progress has been made in understanding ovarian cancer at the molecular and cellular level. Significant improvement in 5-year survival has been achieved through cytoreductive surgery, combination platinum-based chemotherapy, and more effective treatment of recurrent cancer, and there are now more than 280,000 ovarian cancer survivors in the United States. Despite these advances, long-term survival in late-stage disease has improved little over the last 4 decades. Poor outcomes relate, in part, to late stage at initial diagnosis, intrinsic drug resistance, and the persistence of dormant drug-resistant cancer cells after primary surgery and chemotherapy. Our ability to accelerate progress in the clinic will depend on the ability to answer several critical questions regarding this disease. To assess current answers, an American Association for Cancer Research Special Conference on "Critical Questions in Ovarian Cancer Research and Treatment" was held in Pittsburgh, Pennsylvania, on October 1-3, 2017. Although clinical, translational, and basic investigators conducted much of the discussion, advocates participated in the meeting, and many presentations were directly relevant to patient care, including treatment with poly adenosine diphosphate ribose polymerase (PARP) inhibitors, attempts to improve immunotherapy by overcoming the immune suppressive effects of the microenvironment, and a better understanding of the heterogeneity of the disease.


Asunto(s)
Antineoplásicos/uso terapéutico , Inmunoterapia/métodos , Neoplasias Ováricas/diagnóstico , Neoplasias Ováricas/tratamiento farmacológico , Atención Dirigida al Paciente , Inhibidores de Poli(ADP-Ribosa) Polimerasas/uso terapéutico , Congresos como Asunto , Resistencia a Antineoplásicos , Femenino , Humanos , Sociedades Científicas , Microambiente Tumoral
2.
Adv Exp Med Biol ; 1036: 129-144, 2017.
Artículo en Inglés | MEDLINE | ID: mdl-29275469

RESUMEN

Over the last decade, tryptophan catabolism has been firmly established as a powerful mechanism of innate and adaptive immune tolerance. The catabolism of tryptophan is a central pathway maintaining homeostasis by preventing autoimmunity or immunopathology that would result from uncontrolled and overreacting immune responses. This is driven by the key and rate-limiting enzymes indoleamine-2,3-dioxygenase 1 (IDO1) and tryptophan-2,3-dioxygenase 2 (TDO), resulting in local depletion of tryptophan, while tryptophan catabolites accumulate, including kynurenine and its derivatives, depending on the presence of downstream enzymes in the kynurenine pathway. These metabolic modifications result in a local microenvironment that is profoundly immunosuppressive, as a result of various mechanisms whose respective role remains incompletely characterized. Drugs targeting this pathway, specifically IDO1, are already in clinical trials with the aim at reverting cancer-induced immunosuppression. Recent studies have demonstrated favorable pharmacokinetics profiles for first-generation (Indoximod NLG8189) and second-generation IDO1 inhibitors (INCB024360 and NLG919). Targeting tryptophan catabolism in combination with additional methods of therapy may improve efficacy of cancer immunotherapy. These methods include, but are not limited to vaccination, adoptive cellular therapy, checkpoint inhibitor blockade, and cyclooxygenase-2 (COX2) inhibition. Over the last decade, there has been a considerable increase in our understanding of the regulation and downstream mediators of tryptophan metabolism. This detailed understanding will expand opportunities to interfere with the pathway therapeutically on multiple levels. The object of this chapter is to highlight current and past key findings that implicate tryptophan catabolism as an important mediator of cancer immunity and discuss the development of multiple therapeutic targets.


Asunto(s)
Tolerancia Inmunológica , Inmunoterapia/métodos , Indolamina-Pirrol 2,3,-Dioxigenasa , Proteínas de Neoplasias , Neoplasias , Triptófano , Animales , Humanos , Indolamina-Pirrol 2,3,-Dioxigenasa/inmunología , Indolamina-Pirrol 2,3,-Dioxigenasa/metabolismo , Proteínas de Neoplasias/inmunología , Proteínas de Neoplasias/metabolismo , Neoplasias/inmunología , Neoplasias/metabolismo , Neoplasias/terapia , Triptófano/inmunología , Triptófano/metabolismo
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA