Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 21
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Int J Mol Sci ; 24(19)2023 Sep 22.
Artículo en Inglés | MEDLINE | ID: mdl-37833890

RESUMEN

Early overnutrition is associated with cardiometabolic alterations in adulthood, likely attributed to reduced insulin sensitivity due to its crucial role in the cardiovascular system. This study aimed to assess the long-term effects of early overnutrition on the development of cardiovascular insulin resistance. An experimental childhood obesity model was established using male Sprague Dawley rats. Rats were organized into litters of 12 pups/mother (L12-Controls) or 3 pups/mother (L3-Overfed) at birth. After weaning, animals from L12 and L3 were housed three per cage and provided ad libitum access to food for 6 months. L3 rats exhibited elevated body weight, along with increased visceral, subcutaneous, and perivascular fat accumulation. However, heart weight at sacrifice was reduced in L3 rats. Furthermore, L3 rats displayed elevated serum levels of glucose, leptin, adiponectin, total lipids, and triglycerides compared to control rats. In the myocardium, overfed rats showed decreased IL-10 mRNA levels and alterations in contractility and heart rate in response to insulin. Similarly, aortic tissue exhibited modified gene expression of TNFα, iNOS, and IL-6. Additionally, L3 aortas exhibited endothelial dysfunction in response to acetylcholine, although insulin-induced relaxation remained unchanged compared to controls. At the molecular level, L3 rats displayed reduced Akt phosphorylation in response to insulin, both in myocardial and aortic tissues, whereas MAPK phosphorylation was elevated solely in the myocardium. Overfeeding during lactation in rats induces endothelial dysfunction and cardiac insulin resistance in adulthood, potentially contributing to the cardiovascular alterations observed in this experimental model.


Asunto(s)
Resistencia a la Insulina , Hipernutrición , Obesidad Infantil , Enfermedades Vasculares , Niño , Humanos , Femenino , Ratas , Masculino , Animales , Ratas Sprague-Dawley , Obesidad Infantil/complicaciones , Insulina/metabolismo , Lactancia/fisiología , Hipernutrición/complicaciones , Hipernutrición/metabolismo , Enfermedades Vasculares/metabolismo , Miocardio/metabolismo , Peso Corporal
2.
Antioxidants (Basel) ; 12(8)2023 Aug 16.
Artículo en Inglés | MEDLINE | ID: mdl-37627614

RESUMEN

Melatonin is a hormone that regulates sleep-wake cycles and is mainly synthesized in the pineal gland from tryptophan after its conversion into serotonin. Under normal conditions, less than 5% of tryptophan is reserved for the synthesis of serotonin and melatonin. The remaining 95% is metabolized in the liver through the kynurenine pathway. Increased levels of proinflammatory cytokines and cortisol increase the metabolism of tryptophan through the kynurenine pathway and reduce its availability for the synthesis of melatonin and serotonin, which may cause alterations in mood and sleep. The standardized saffron extract (affron®) has shown beneficial effects on mood and sleep disorders in humans, but the underlying mechanisms are not well understood. Thus, the aim of this work was to study the effects of affron® supplementation on the kynurenine pathway and the synthesis of melatonin in rats. For this purpose, adult male Wistar rats were supplemented for 7 days with 150 mg/kg of affron® or vehicle (2 mL/kg water) administered by gavage one hour before sleep. Affron® supplementation reduced body weight gain and increased the circulating levels of melatonin, testosterone, and c-HDL. Moreover, animals supplemented with affron® showed decreased serum levels of kynurenine, ET-1, and c-LDL. In the pineal gland, affron® reduced Il-6 expression and increased the expression of Aanat, the key enzyme for melatonin synthesis. In the liver, affron® administration decreased the mRNA levels of the enzymes of the kynurenine pathway Ido-2, Tod-2, and Aadat, as well as the gene expression of Il-1ß and Tnf-α. Finally, rats treated with affron® showed increased mRNA levels of the antioxidant enzymes Ho-1, Sod-1, Gsr, and Gpx-3, both in the liver and in the pineal gland. In conclusion, affron® supplementation reduces kynurenine levels and promotes melatonin synthesis in rats, possibly through its antioxidant and anti-inflammatory effects, making this extract a possible alternative for the treatment and/or prevention of mood and sleep disorders.

3.
Int J Mol Sci ; 24(10)2023 May 10.
Artículo en Inglés | MEDLINE | ID: mdl-37239868

RESUMEN

Insulin resistance is one of the main characteristics of metabolic syndrome (MetS) and the main cause of the development of type II diabetes. The high prevalence of this syndrome in recent decades has made it necessary to search for preventive and therapeutic agents, ideally of natural origin, with fewer side effects than conventional pharmacological treatments. Tea is widely known for its medicinal properties, including beneficial effects on weight management and insulin resistance. The aim of this study was to analyze whether a standardized extract of green and black tea (ADM® Complex Tea Extract (CTE)) prevents the development of insulin resistance in mice with MetS. For this purpose, C57BL6/J mice were fed for 20 weeks with a standard diet (Chow), a diet with 56% kcal from fat and sugar (HFHS) or an HFHS diet supplemented with 1.6% CTE. CTE supplementation reduced body weight gain, adiposity and circulating leptin levels. Likewise, CTE also exerted lipolytic and antiadipogenic effects in 3T3-L1 adipocyte cultures and in the C. elegans model. Regarding insulin resistance, CTE supplementation significantly increased plasma adiponectin concentrations and reduced the circulating levels of insulin and the HOMA-IR. Incubation of liver, gastrocnemius muscle and retroperitoneal adipose tissue explants with insulin increased the pAkt/Akt ratio in mice fed with Chow and HFHS + CTE but not in those fed only with HFHS. The greater activation of the PI3K/Akt pathway in response to insulin in mice supplemented with CTE was associated with a decrease in the expression of the proinflammatory markers Mcp-1, IL-6, IL-1ß or Tnf-α and with an overexpression of the antioxidant enzymes Sod-1, Gpx-3, Ho-1 and Gsr in these tissues. Moreover, in skeletal muscle, mice treated with CTE showed increased mRNA levels of the aryl hydrocarbon receptor (Ahr), Arnt and Nrf2, suggesting that the CTE's insulin-sensitizing effects could be the result of the activation of this pathway. In conclusion, supplementation with the standardized extract of green and black tea CTE reduces body weight gain, exerts lipolytic and antiadipogenic effects and reduces insulin resistance in mice with MetS through its anti-inflammatory and antioxidant effects.


Asunto(s)
Camellia sinensis , Diabetes Mellitus Tipo 2 , Resistencia a la Insulina , Síndrome Metabólico , Ratones , Animales , Síndrome Metabólico/tratamiento farmacológico , Síndrome Metabólico/complicaciones , , Diabetes Mellitus Tipo 2/tratamiento farmacológico , Fosfatidilinositol 3-Quinasas , Caenorhabditis elegans , Proteínas Proto-Oncogénicas c-akt , Extractos Vegetales/farmacología , Extractos Vegetales/uso terapéutico , Obesidad/metabolismo , Aumento de Peso , Insulina , Antioxidantes/farmacología , Antioxidantes/uso terapéutico , Suplementos Dietéticos , Dieta Alta en Grasa/efectos adversos , Ratones Endogámicos C57BL
4.
Antioxidants (Basel) ; 11(9)2022 Sep 13.
Artículo en Inglés | MEDLINE | ID: mdl-36139877

RESUMEN

Carob, the fruit of Ceratonia siliqua L. exerts antidiabetic, anti-inflammatory, and antioxidant effects and could be a useful strategy for the treatment and/or prevention of metabolic syndrome (MetS). The aim of this study was to analyze whether supplementation with a carob fruit extract (CSAT+®), alone or in combination with aerobic training, accelerates the recovery of cardiometabolic health in mice with MetS subjected to a caloric restriction. For this purpose, mice were fed with a high fat (58% kcal from fat)/high sugar diet for 23 weeks to induce MetS. During the next two weeks, mice with MetS were switched to a diet with a lower caloric content (25% kcal from fat) supplemented or not with CSAT+® (4.8%) and/or subjected to aerobic training. Both caloric reduction and aerobic training improved the lipid profile and attenuated MetS-induced insulin resistance measured as HOMA-IR. However, only supplementation with CSAT+® enhanced body weight loss, increased the circulating levels of adiponectin, and lowered the plasma levels of IL-6. Moreover, CSAT+® supplementation was the only effective strategy to reduce the weight of epidydimal adipose tissue and to improve insulin sensitivity in the liver and in skeletal muscle. Although all interventions improved endothelial function in aorta segments, only supplementation with CSAT+® reduced obesity-induced hypertension, prevented endothelial dysfunction in mesenteric arteries, and decreased the vascular response of aorta segments to the vasoconstrictor AngII. The beneficial cardiometabolic effects of CSAT+® supplementation, alone or in combination with aerobic training, were associated with decreased mRNA levels of pro-inflammatory markers such as MCP-1, TNFα, IL-1ß, and IL-6 and with increased gene expression of antioxidant enzymes, such as GSR, GPX-3, and SOD-1 in the liver, gastrocnemius, retroperitoneal adipose tissue, and aorta. In conclusion, supplementation with CSAT+®, alone or in combination with aerobic training, to mice with MetS subjected to caloric restriction for two weeks enhances body weight loss, improves the lipid profile and insulin sensitivity, and exerts antihypertensive effects through its anti-inflammatory and antioxidant properties.

5.
Antioxidants (Basel) ; 11(8)2022 Aug 15.
Artículo en Inglés | MEDLINE | ID: mdl-36009292

RESUMEN

Hypertension is considered to be both a cardiovascular disease and a risk factor for other cardiovascular diseases, such as coronary ischemia or stroke. In many cases, hypertension occurs in the context of metabolic syndrome (MetS), a condition in which other circumstances such as abdominal obesity, dyslipidemia, and insulin resistance are also present. The high incidence of MetS makes necessary the search for new strategies, ideally of natural origin and with fewer side effects than conventional pharmacological treatments. Among them, the tea plant is a good candidate, as it contains several bioactive compounds such as caffeine, volatile terpenes, organic acids, and polyphenols with positive biological effects. The aim of this study was to assess whether two new standardized tea extracts, one of white tea (WTE) and the other of black and green tea (CTE), exert beneficial effects on the cardiovascular alterations associated with MetS. For this purpose, male C57/BL6J mice were fed a standard diet (Controls), a diet high in fats and sugars (HFHS), HFHS supplemented with 1.6% WTE, or HFHS supplemented with 1.6% CTE for 20 weeks. The chromatography results showed that CTE is more concentrated on gallic acid, xanthines and flavan-3-ols than WTE. In vivo, supplementation with WTE and CTE prevented the development of MetS-associated hypertension through improved endothelial function. This improvement was associated with a lower expression of proinflammatory and prooxidant markers, and-in the case of CTE supplementation-also with a higher expression of antioxidant enzymes in arterial tissue. In conclusion, supplementation with WTE and CTE prevents the development of hypertension in obese mice; as such, they could be an interesting strategy to prevent the cardiovascular disorders associated with MetS.

6.
Front Nutr ; 9: 918841, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-35795581

RESUMEN

Nutraceuticals are products of natural origin widely used for the treatment and/or prevention of some chronic diseases that are highly prevalent in Western countries, such as obesity or type II diabetes, among others. However, its possible use in the prevention of acute diseases that can put life at risk has been poorly studied. Sepsis is an acute condition that causes cardiovascular and skeletal muscle damage due to a systemic inflammatory state. The aim of this work was to evaluate the possible beneficial effect of a new nutraceutical based on a mixture of algae oil (AO) and extra virgin olive oil (EVOO) supplemented with an olive leaf extract (OLE) in the prevention of cardiovascular alterations and skeletal muscle disorders induced by sepsis in rats. For this purpose, male Wistar rats were treated with the nutraceutical or with water p.o. for 3 weeks and after the treatment they were injected with 1mg/kg LPS twice (12 and 4 h before sacrifice). Pretreatment with the nutraceutical prevented the LPS-induced decrease in cardiac contractility before and after the hearts were subjected to ischemia-reperfusion. At the vascular level, supplementation with the nutraceutical did not prevent hypotension in septic animals, but it attenuated endothelial dysfunction and the increased response of aortic rings to the vasoconstrictors norepinephrine and angiotensin-II induced by LPS. The beneficial effects on cardiovascular function were associated with an increased expression of the antioxidant enzymes SOD-1 and GSR in cardiac tissue and SOD-1 and Alox-5 in arterial tissue. In skeletal muscle, nutraceutical pretreatment prevented LPS-induced muscle proteolysis and autophagy and significantly increased protein synthesis as demonstrated by decreased expression of MURF-1, atrogin-1, LC3b and increased MCH-I and MCH -IIa in gastrocnemius muscle. These effects were associated with a decrease in the expression of TNFα, HDAC4 and myogenin. In conclusion, treatment with a new nutraceutical based on a mixture of AO and EVOO supplemented with OLE is useful to prevent cardiovascular and muscular changes induced by sepsis in rats. Thus, supplementation with this nutraceutical may constitute an interesting strategy to reduce the severity and mortality risk in septic patients.

7.
Antioxidants (Basel) ; 10(7)2021 Jul 01.
Artículo en Inglés | MEDLINE | ID: mdl-34356299

RESUMEN

Olive-derived products, such as virgin olive oil (EVOO) and/or olive leaf extracts (OLE), exert anti-inflammatory, insulin-sensitizing and antihypertensive properties and may be useful for stabilizing omega 3 fatty acids (n-3 PUFA) due to their high content in antioxidant compounds. In this study, the addition of OLE 4:0.15 (w/w) to a mixture of algae oil (AO) rich in n-3 PUFA and EVOO (25:75, w/w) prevents peroxides formation after 12 months of storage at 30 °C. Furthermore, the treatment with the oil mixture (2.5 mL/Kg) and OLE (100 mg/Kg) to 24 month old Wistar rats for 21 days improved the lipid profile, increased the HOMA-IR and decreased the serum levels of miRNAs 21 and 146a. Treatment with this new nutraceutical also prevented age-induced insulin resistance in the liver, gastrocnemius and visceral adipose tissue by decreasing the mRNA levels of inflammatory and oxidative stress markers. Oil mixture + OLE also attenuated the age-induced alterations in vascular function and prevented muscle loss by decreasing the expression of sarcopenia-related markers. In conclusion, treatment with a new nutraceutical based on a mixture of EVOO, AO and OLE is a useful strategy for improving the stability of n-3 PUFA in the final product and to attenuate the cardiometabolic and muscular disorders associated with aging.

8.
Antioxidants (Basel) ; 10(5)2021 May 07.
Artículo en Inglés | MEDLINE | ID: mdl-34067004

RESUMEN

Aging is associated with increased visceral adiposity and a decrease in the amount of brown adipose tissue and muscle mass, known as sarcopenia, which results in the development of metabolic alterations such as insulin resistance. In this study, we aimed to analyze whether 3-week supplementation with a phenolic-rich olive leaf extract (OLE) to 24 months-old male Wistar rats orally (100 mg/kg) attenuated the aging-induced alterations in body composition and insulin resistance. OLE treatment increased brown adipose tissue and attenuated the aging-induced decrease in protein content and gastrocnemius weight. Treatment with OLE prevented the aging-induced increase in the expression of PPAR-γ in visceral and brown adipose tissues, while it significantly increased the expression of PPAR-α in the gastrocnemius of old rats and reduced various markers related to sarcopenia such as myostatin, HDAC-4, myogenin and MyoD. OLE supplementation increased insulin sensitivity in explants of gastrocnemius and epididymal visceral adipose tissue from aged rats through a greater activation of the PI3K/Akt pathway, probably through the attenuation of inflammation in both tissues. In conclusion, supplementation with OLE prevents the loss of muscle mass associated with aging and exerts anti-inflammatory and insulin-sensitizing effects on adipose tissue and skeletal muscle.

9.
Sci Rep ; 11(1): 8188, 2021 04 14.
Artículo en Inglés | MEDLINE | ID: mdl-33854149

RESUMEN

Olive leaves are rich in bioactive substances which exert anti-inflammatory, antioxidant, insulin-sensitizing and antihypertensive effects. The aim of this study was to analyze the possible beneficial effects of an olive leaf extract (OLE) rich in secoiridoids and phenolic compounds on the aging-induced metabolic and vascular alterations. Three experimental groups of rats were used: 3-month-old rats, 24-month-old rats and 24-month-old rats supplemented 21 days with OLE (100 mg/kg). Administration of OLE to aged rats decreased the weight of adrenal glands and prevented the aging-induced loss of body weight and muscle mass. In the serum, OLE reduced the circulating levels of LDL-cholesterol and IL-6 and increased the concentrations of leptin and adiponectin. In the liver OLE attenuated the decreased gene expression of SOD-1, GSR, GCK and GSK-3ß and reduced the aging-induced overexpression of NOX-4, Alox-5, iNOS and TNF-α. In aorta segments, OLE prevented endothelial dysfunction and vascular insulin resistance and improved vasoconstriction in response to KCl and NA. Improvement in vascular function was associated with the attenuation of the alterations in the gene expression of COX-2, IL-6, GPx, NOX-1 and IL-10. In conclusion, OLE exerts anti-inflammatory and antioxidant effects in aged rats and attenuates the alterations in vascular function associated with aging.


Asunto(s)
Envejecimiento/efectos de los fármacos , LDL-Colesterol/sangre , Redes Reguladoras de Genes/efectos de los fármacos , Interleucina-6/sangre , Leptina/sangre , Estrés Oxidativo/efectos de los fármacos , Glándulas Suprarrenales/efectos de los fármacos , Glándulas Suprarrenales/metabolismo , Envejecimiento/sangre , Envejecimiento/genética , Animales , Regulación de la Expresión Génica/efectos de los fármacos , Masculino , Modelos Animales , Olea , Tamaño de los Órganos/efectos de los fármacos , Hojas de la Planta , Ratas , Ratas Wistar
10.
Nutrients ; 13(1)2020 Dec 25.
Artículo en Inglés | MEDLINE | ID: mdl-33375628

RESUMEN

Aging is associated with a progressive decline in skeletal muscle mass, strength and function (sarcopenia). We have investigated whether a mixture of algae oil (25%) and extra virgin olive oil (75%) could exert beneficial effects on sarcopenia. Young (3 months) and old (24 months) male Wistar rats were treated with vehicle or with the oil mixture (OM) (2.5 mL/kg) for 21 days. Aging decreased gastrocnemius weight, total protein, and myosin heavy chain mRNA. Treatment with the OM prevented these effects. Concomitantly, OM administration decreased the inflammatory state in muscle; it prevented the increase of pro-inflammatory interleukin-6 (IL-6) and the decrease in anti-inflammatory interleukin-10 (IL-10) in aged rats. The OM was not able to prevent aging-induced alterations in either the insulin-like growth factor I/protein kinase B (IGF-I/Akt) pathway or in the increased expression of atrogenes in the gastrocnemius. However, the OM prevented decreased autophagy activity (ratio protein 1A/1B-light chain 3 (LC3b) II/I) induced by aging and increased expression of factors related with muscle senescence such as histone deacetylase 4 (HDAC-4), myogenin, and IGF-I binding protein 5 (IGFBP-5). These data suggest that the beneficial effects of the OM on muscle can be secondary to its anti-inflammatory effect and to the normalization of HDAC-4 and myogenin levels, making this treatment an alternative therapeutic tool for sarcopenia.


Asunto(s)
Envejecimiento/fisiología , Histona Desacetilasas/fisiología , Músculo Esquelético/fisiología , Aceites/administración & dosificación , Aceite de Oliva/administración & dosificación , Animales , Ácidos Grasos Omega-3/administración & dosificación , Histona Desacetilasas/análisis , Inflamación/prevención & control , Factor I del Crecimiento Similar a la Insulina/análisis , Factor I del Crecimiento Similar a la Insulina/genética , Masculino , Proteínas Musculares/análisis , Músculo Esquelético/química , Músculo Esquelético/efectos de los fármacos , Miogenina/análisis , Cadenas Pesadas de Miosina/genética , Tamaño de los Órganos/efectos de los fármacos , ARN Mensajero/análisis , Ratas , Ratas Wistar , Sarcopenia/prevención & control , Estramenopilos
11.
Antioxidants (Basel) ; 9(6)2020 Jun 03.
Artículo en Inglés | MEDLINE | ID: mdl-32503213

RESUMEN

Aging is one of the major risk factors for suffering cardiovascular and metabolic diseases. Due to the increase in life expectancy, there is a strong interest in the search for anti-aging strategies to treat and prevent these aging-induced disorders. Both omega 3 polyunsaturated fatty acids (ω-3 PUFA) and extra virgin olive oil (EVOO) exert numerous metabolic and cardiovascular benefits in the elderly. In addition, EVOO constitutes an interesting ingredient to stabilize ω-3 PUFA and decrease their oxidation process due to its high content in antioxidant compounds. ω-3 PUFA are commonly obtained from fish. However, more ecological and sustainable sources, such as algae oil (AO) can also be used. In this study, we aimed to study the possible beneficial effect of an oil mixture composed by EVOO (75%) and AO (25%) rich in ω-3 PUFA (35% docosahexaenoic acid (DHA) and 20% eicosapentaenoic acid (EPA)) on the cardiometabolic alterations associated with aging. For this purpose; young (three months old) and old (24 months old) male Wistar rats were treated with vehicle or with the oil mixture (2.5 mL/kg) for 21 days. Treatment with the oil mixture prevented the aging-induced increase in the serum levels of saturated fatty acids (SFA) and the aging-induced decrease in the serum concentrations of mono-unsaturated fatty acids (MUFA). Old treated rats showed increased serum concentrations of EPA and DHA and decreased HOMA-IR index and circulating levels of total cholesterol, insulin and IL-6. Treatment with the oil mixture increased the mRNA levels of antioxidant and insulin sensitivity-related enzymes, as well as reduced the gene expression of pro-inflammatory markers in the liver and in cardiac and aortic tissues. In addition, the treatment also prevented the aging-induced endothelial dysfunction and vascular insulin resistance through activation of the PI3K/Akt pathway. Moreover, aortic rings from old rats treated with the oil mixture showed a decreased response to the vasoconstrictor AngII. In conclusion, treatment with a mixture of EVOO and AO improves the lipid profile, insulin sensitivity and vascular function in aged rats and decreases aging-induced inflammation and oxidative stress in the liver, and in the cardiovascular system. Thus, it could be an interesting strategy to deal with cardiometabolic alterations associated with aging.

12.
Antioxidants (Basel) ; 9(4)2020 Apr 21.
Artículo en Inglés | MEDLINE | ID: mdl-32326269

RESUMEN

The incidence of metabolic syndrome (MetS) is increasing worldwide which makes necessary the finding of new strategies to treat and/or prevent it. The aim of this study was to analyze the possible beneficial effects of a carob fruit extract (CSAT+®) on the cardiometabolic alterations associated with MetS in mice. 16-week-old C57BL/6J male mice were fed for 26 weeks either with a standard diet (chow) or with a diet rich in fats and sugars (HFHS), supplemented or not with 4.8% of CSAT+®. CSAT+® supplementation reduced blood glucose, Homeostatic Model Assessment of Insulin Resistance (HOMA-IR) and circulating levels of total cholesterol, low-density lipoprotein (LDL) cholesterol (LDL-c), insulin, and interleukin-6 (IL-6). In adipose tissue and skeletal muscle, CSAT+® prevented MetS-induced insulin resistance, reduced macrophage infiltration and the expression of pro-inflammatory markers, and up-regulated the mRNA levels of antioxidant markers. Supplementation with CSAT+® prevented MetS-induced hypertension and decreased the vascular response of aortic rings to angiotensin II (AngII). Moreover, treatment with CSAT+® attenuated endothelial dysfunction and increased vascular sensitivity to insulin. In the heart, CSAT+® supplementation reduced cardiomyocyte apoptosis and prevented ischemia-reperfusion-induced decrease in cardiac contractility. The beneficial effects at the cardiovascular level were associated with a lower expression of pro-inflammatory and pro-oxidant markers in aortic and cardiac tissues.

13.
Nutrients ; 12(2)2020 Feb 20.
Artículo en Inglés | MEDLINE | ID: mdl-32093229

RESUMEN

Childhood obesity is associated with metabolic and cardiovascular comorbidities. The development of these alterations may have its origin in early life stages such as the lactation period through metabolic programming. Insulin resistance is a common complication in obese patients and may be responsible for the cardiovascular alterations associated with this condition. This study analyzed the development of cardiovascular insulin resistance in a rat model of childhood overweight induced by overfeeding during the lactation period. On birth day, litters were divided into twelve (L12) or three pups per mother (L3). Overfed rats showed a lower increase in myocardial contractility in response to insulin perfusion and a reduced insulin-induced vasodilation, suggesting a state of cardiovascular insulin resistance. Vascular insulin resistance was due to decreased activation of phosphoinositide 3-kinase (PI3K)/Akt pathway, whereas cardiac insulin resistance was associated with mitogen-activated protein kinase (MAPK) hyperactivity. Early overfeeding was also associated with a proinflammatory and pro-oxidant state; endothelial dysfunction; decreased release of nitrites and nitrates; and decreased gene expression of insulin receptor (IR), glucose transporter-4 (GLUT-4), and endothelial nitric oxide synthase (eNOS) in response to insulin. In conclusion, overweight induced by lactational overnutrition in rat pups is associated with cardiovascular insulin resistance that could be related to the cardiovascular alterations associated with this condition.


Asunto(s)
Enfermedades Cardiovasculares/etiología , Resistencia a la Insulina/fisiología , Insulina/metabolismo , Hipernutrición/fisiopatología , Obesidad Infantil/fisiopatología , Animales , Modelos Animales de Enfermedad , Femenino , Corazón/fisiopatología , Lactancia/fisiología , Masculino , Contracción Miocárdica , Miocardio/metabolismo , Hipernutrición/complicaciones , Obesidad Infantil/complicaciones , Ratas , Transducción de Señal , Vasodilatación
14.
Nutrients ; 11(1)2019 01 12.
Artículo en Inglés | MEDLINE | ID: mdl-30642033

RESUMEN

Aged black garlic (ABG) is a functional food with antioxidant and anti-inflammatory properties. Recent studies also report its beneficial metabolic effects in a context of obesity or diabetes, although the mechanisms involved are poorly understood. The aim of this work was to analyze the effects of an ABG extract in the vascular and metabolic alterations induced by a high-fat/sucrose diet in rats. For this purpose, male Sprague⁻Dawley rats were fed either a standard chow (controls; n = 12) or a high-fat/sucrose diet (HFD; n = 24) for 16 weeks. From week 8 on, half of the HFD rats were treated with a commercial ABG extract concentrated in S-allyl cysteine and melanoidins (ABG10+®; 250 mg/kg daily by gavage; 5 mL/kg). ABG10+®-treated rats showed lower mean caloric intake, body weight, triglycerides, low density lipoprotein cholesterol (LDL-c), insulin and leptin serum concentrations and higher high density lipoprotein cholesterol (HDL-c) and adiponectin serum concentrations than non-treated rats. In the hypothalamus, ABG10+® treatment induced an increase in the gene expression of proopiomelanocortin (POMC) and a decrease in leptin receptor (ObR) mRNA levels. No significant changes were found in visceral adipose tissue except for an overexpression of ß3-adrenergic receptor (ß3-ADR) in ABG-treated rats. In subcutaneous adipose tissue, ABG10+® treatment decreased adipose weight and downregulated the gene expression of PPAR-γ, LPL, ObR and HSL. In brown adipose tissue, an overexpression of InsR, GLUT-4, UCP-1 and ß3-ADR in ABG10+®-treated rats was found, whereas PPAR-γ mRNA levels were significantly decreased. Regarding vascular function, ABG10+® treatment attenuated the obesity-induced vasoconstriction in response to potassium chloride both in presence/absence of perivascular adipose tissue (PVAT). On the contrary, aorta segments from ABG-treated rats showed and improved relaxation in response to acetylcholine only when PVAT was present, with this fact possible being related to the decreased gene expression of proinflammatory cytokines in this tissue. In conclusion, ABG10+® administration partially improves the metabolic and vascular alterations induced by a high-fat/high-sucrose diet in rats through modifications in the gene expression of proteins and neuropeptides involved in inflammation, fat metabolism and food intake regulation. Further studies are required to assess the bioavailability of ABG between rats and humans.


Asunto(s)
Dieta Alta en Grasa/efectos adversos , Sacarosa en la Dieta/administración & dosificación , Ajo/química , Extractos Vegetales/farmacología , Adiponectina/sangre , Adiposidad/efectos de los fármacos , Animales , Antioxidantes/farmacología , Peso Corporal , HDL-Colesterol/sangre , Regulación de la Expresión Génica , Prueba de Tolerancia a la Glucosa , Transportador de Glucosa de Tipo 4/genética , Transportador de Glucosa de Tipo 4/metabolismo , Hipotálamo/efectos de los fármacos , Insulina/sangre , Leptina/sangre , Masculino , Tamaño de los Órganos/efectos de los fármacos , PPAR gamma/genética , PPAR gamma/metabolismo , Ratas , Ratas Sprague-Dawley , Receptor de Insulina/genética , Receptor de Insulina/metabolismo , Receptores Adrenérgicos beta 3/genética , Receptores Adrenérgicos beta 3/metabolismo , Triglicéridos/sangre , Proteína Desacopladora 1/genética , Proteína Desacopladora 1/metabolismo
15.
Exp Gerontol ; 88: 32-41, 2017 02.
Artículo en Inglés | MEDLINE | ID: mdl-28039024

RESUMEN

Cardiovascular alterations are the most prevalent cause of impaired physiological function in aged individuals with kidney being one the most affected organs. Aging-induced alterations in renal circulation are associated with a decrease in endothelium-derived relaxing factors such as nitric oxide (NO) and with an increase in contracting factors such as endothelin-1(ET-1). As caloric restriction (CR) exerts beneficial effects preventing some of the aging-induced alterations in cardiovascular system, the aim of this study was to analyze the effects of age and caloric restriction in the vascular response of renal arteries to ET-1 in aged rats. Vascular function was studied in renal arteries from 3-month-old Wistar rats fed ad libitum (3m) and in renal arteries from 8-and 24-month-old Wistar rats fed ad libitum (8m and 24m), or subjected to 20% caloric restriction during their three last months of life (8m-CR and 24m-CR). The contractile response to ET-1 was increased in renal arteries from 8m and 24m compared to 3m rats. ET-1-induced contraction was mediated by ET-A receptors in all experimental groups and also by ET-B receptors in 24m rats. Caloric restriction attenuated the increased contraction to ET-1 in renal arteries from 8m but not from 24m rats possibly through NO release proceeding from ET-B endothelial receptors. In 24m rats, CR did not attenuate the aging-increased response of renal arteries to ET-1, but it prevented the aging-induced increase in iNOS mRNA levels and the aging-induced decrease in eNOS mRNA levels in arterial tissue. In conclusion, aging is associated with an increased response to ET-1 in renal arteries that is prevented by CR in 8m but not in 24m rats.


Asunto(s)
Envejecimiento/fisiología , Restricción Calórica , Endotelina-1/metabolismo , Óxido Nítrico Sintasa de Tipo III/metabolismo , Óxido Nítrico Sintasa de Tipo II/metabolismo , Arteria Renal/fisiología , Animales , Masculino , Óxido Nítrico Sintasa de Tipo II/genética , Óxido Nítrico Sintasa de Tipo III/genética , ARN Mensajero/metabolismo , Ratas , Ratas Wistar
16.
Basic Clin Pharmacol Toxicol ; 119(2): 184-92, 2016 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-26821335

RESUMEN

Opening of intermediate-conductance calcium-activated potassium channels (KC a 3.1) produces membrane hyperpolarization in the vascular endothelium. Here, we studied the ability of two new KC a 3.1-selective positive-gating modulators, SKA-111 and SKA-121, to (1) evoke porcine endothelial cell KC a 3.1 membrane hyperpolarization, (2) induce endothelium-dependent and, particularly, endothelium-derived hyperpolarization (EDH)-type relaxation in porcine coronary arteries (PCA) and (3) influence coronary artery tone in isolated rat hearts. In whole-cell patch-clamp experiments on endothelial cells of PCA (PCAEC), KC a currents evoked by bradykinin (BK) were potentiated ≈7-fold by either SKA-111 or SKA-121 (both at 1 µM) and were blocked by a KC a 3.1 blocker, TRAM-34. In membrane potential measurements, SKA-111 and SKA-121 augmented bradykinin-induced hyperpolarization. Isometric tension measurements in large- and small-calibre PCA showed that SKA-111 and SKA-121 potentiated endothelium-dependent relaxation with intact NO synthesis and EDH-type relaxation to BK by ≈2-fold. Potentiation of the BK response was prevented by KC a 3.1 inhibition. In Langendorff-perfused rat hearts, SKA-111 potentiated coronary vasodilation elicited by BK. In conclusion, our data show that positive-gating modulation of KC a 3.1 channels improves BK-induced membrane hyperpolarization and endothelium-dependent relaxation in small and large PCA as well as in the coronary circulation of rats. Positive-gating modulators of KC a 3.1 could be therapeutically useful to improve coronary blood flow and counteract impaired coronary endothelial dysfunction in cardiovascular disease.


Asunto(s)
Vasos Coronarios/citología , Células Endoteliales/metabolismo , Canales de Potasio de Conductancia Intermedia Activados por el Calcio/efectos de los fármacos , Animales , Bradiquinina/farmacología , Células Cultivadas , Circulación Coronaria/efectos de los fármacos , Endotelio Vascular/efectos de los fármacos , Endotelio Vascular/metabolismo , Regulación de la Expresión Génica , Corazón/efectos de los fármacos , Corazón/fisiología , Canales de Potasio de Conductancia Intermedia Activados por el Calcio/fisiología , Masculino , Óxido Nítrico Sintasa de Tipo III/genética , Óxido Nítrico Sintasa de Tipo III/metabolismo , Oxazoles/farmacología , Técnicas de Placa-Clamp , Pirazoles/farmacología , ARN Mensajero/genética , ARN Mensajero/metabolismo , Ratas , Ratas Sprague-Dawley , Porcinos , Vasodilatación/efectos de los fármacos , Vasodilatadores/farmacología
17.
Vascul Pharmacol ; 73: 96-103, 2015 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-26070527

RESUMEN

The aim of this study is to analyze the expression of purinergic receptors in the heart after ischemia-reperfusion, and their possible role in ischemia-reperfusion injury. Rat hearts were perfused according to the Langendorff technique and subjected to 30 min ischemia followed by 15 min reperfusion. Ischemia-reperfusion reduced the gene expression and protein content of purinergic receptors of the P2Y2 subtype, and increased the gene expression and protein content of the P2X7 subtype. Treatment with the agonist of the P2Y2 subtype 2-thio-UTP and with the antagonist of the P2X7 subtype Brilliant Blue improved myocardial function parameters, reduced cell death and increased the myocardial expression of antiapoptotic markers after ischemia-reperfusion. These results suggest that the myocardial expression of the protective P2Y2 subtype of purinergic receptors is reduced, whereas that of the harmful subtype P2X7 subtype is increased during coronary ischemia-reperfusion. This may contribute to myocardial injury in this condition.


Asunto(s)
Daño por Reperfusión Miocárdica/metabolismo , Miocardio/metabolismo , Receptores Purinérgicos P2X7/metabolismo , Receptores Purinérgicos P2Y2/metabolismo , Animales , Apoptosis , Proteínas Reguladoras de la Apoptosis/metabolismo , Regulación hacia Abajo , Hemodinámica , Preparación de Corazón Aislado , Masculino , Daño por Reperfusión Miocárdica/tratamiento farmacológico , Daño por Reperfusión Miocárdica/genética , Daño por Reperfusión Miocárdica/patología , Daño por Reperfusión Miocárdica/fisiopatología , Miocardio/patología , Antagonistas del Receptor Purinérgico P2X/farmacología , Agonistas del Receptor Purinérgico P2Y/farmacología , Ratas Sprague-Dawley , Receptores Purinérgicos P2X7/efectos de los fármacos , Receptores Purinérgicos P2X7/genética , Receptores Purinérgicos P2Y2/efectos de los fármacos , Receptores Purinérgicos P2Y2/genética , Transducción de Señal , Factores de Tiempo , Regulación hacia Arriba
18.
Exp Gerontol ; 60: 183-9, 2014 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-25446983

RESUMEN

BACKGROUND AND AIMS: Aging is associated with alterations in the cardiovascular system such as increased vasoconstriction and decreased vasodilatation. Some of these changes are partially reversed by caloric restriction. Endothelin-1 is a potent vasoconstrictor which levels increased with age. The aim of this study is to analyze the role of endothelin-1 in the cardiac and coronary changes induced by age and whether these changes may be attenuated by a three-month caloric restriction. METHODS AND RESULTS: Hearts from young (3 months old), aged (24 months old) and aged rats after 3 months of caloric restriction were perfused according to the Langendorff technique. Coronary vasoconstriction to endothelin-1 was reduced in old rats, and endothelin-1 increased myocardial contractility (dP/dt) and heart rate in old but not in young rats. These changes observed in old rats were partly reversed by caloric restriction. Also, in the myocardial tissue of old rats the gene expression of endothelin-1, inducible nitric oxide synthase (iNOS) and tumor necrosis factor alpha (TNF-a) was increased, and the gene expression of endothelin ETB receptors and endothelial nitric oxide syntase (eNOS) was reduced, compared with young rats. Aging induced changes in the expression of ETB receptors and eNOS were reversed by caloric restriction. CONCLUSIONS: These results suggest that aging produces alterations in myocardial and coronary responses to endothelin-1, that may be related to changes in expression of nitric oxide synthases and/or endothelin receptor subtypes, with some of these changes being prevented by caloric restriction.


Asunto(s)
Envejecimiento/fisiología , Restricción Calórica , Circulación Coronaria/fisiología , Endotelina-1/fisiología , Contracción Miocárdica/fisiología , Envejecimiento/genética , Animales , Circulación Coronaria/efectos de los fármacos , Circulación Coronaria/genética , Endotelina-1/administración & dosificación , Endotelina-1/genética , Expresión Génica , Masculino , Contracción Miocárdica/efectos de los fármacos , Contracción Miocárdica/genética , Miocardio/metabolismo , Óxido Nítrico Sintasa de Tipo II/genética , ARN Mensajero/genética , ARN Mensajero/metabolismo , Ratas , Ratas Wistar , Receptor de Endotelina A/genética , Receptor de Endotelina B/genética , Factor de Necrosis Tumoral alfa/genética , Vasoconstricción/efectos de los fármacos , Vasoconstricción/fisiología
19.
J Vasc Res ; 51(4): 283-9, 2014.
Artículo en Inglés | MEDLINE | ID: mdl-25228127

RESUMEN

To determine the involvement of purinergic receptors in coronary endothelium-dependent relaxation, the response to acetylcholine (1 × 10(-8) to 3 × 10(-7)M) was recorded in isolated rat hearts perfused according to the Langendorff procedure before and after 30 min of ischemia and 15 min of reperfusion and after the inhibition of nitric oxide synthesis with L-NAME (10(-4)M), in the absence and presence of the antagonist of purinergic P2X receptors, PPADS (3 × 10(-6)M), and of the antagonist of purinergic P2Y receptors, Reactive Blue 2 (3 × 10(-7)M). In control conditions, the relaxation to acetylcholine was not altered by PPADS or Reactive Blue 2. The relaxation to acetylcholine was reduced after ischemia-reperfusion, and, in this condition, it was further reduced by treatment with PPADS or Reactive Blue 2. Likewise, the relaxation to acetylcholine was reduced by L-NAME, and reduced further by Reactive Blue 2 but not by PPADS. These results suggest that the relaxation to acetylcholine may be partly mediated by purinergic receptors after ischemia-reperfusion, due to the reduction of nitric oxide release in this condition.


Asunto(s)
Acetilcolina/farmacología , Circulación Coronaria/efectos de los fármacos , Corazón/fisiología , Daño por Reperfusión Miocárdica/tratamiento farmacológico , Receptores Purinérgicos P2X/fisiología , Receptores Purinérgicos P2Y/fisiología , Animales , Circulación Coronaria/fisiología , Inhibidores Enzimáticos/farmacología , Corazón/efectos de los fármacos , Masculino , Daño por Reperfusión Miocárdica/fisiopatología , NG-Nitroarginina Metil Éster/farmacología , Nitroprusiato/farmacología , Inhibidores de Agregación Plaquetaria/farmacología , Antagonistas del Receptor Purinérgico P2X/farmacología , Antagonistas del Receptor Purinérgico P2Y/farmacología , Fosfato de Piridoxal/análogos & derivados , Fosfato de Piridoxal/farmacología , Ratas Sprague-Dawley , Triazinas/farmacología , Vasodilatación/efectos de los fármacos , Vasodilatación/fisiología , Vasodilatadores/farmacología
20.
PLoS One ; 8(6): e65172, 2014.
Artículo en Inglés | MEDLINE | ID: mdl-23755190

RESUMEN

To analyze the long-term effects of early overfeeding on the heart and coronary circulation, the effect of ischemia-reperfusion (I/R) and the role of the renin-angiotensin system (RAS) was studied in isolated hearts from control and overfed rats during lactation. On the day of birth litters were adjusted to twelve pups per mother (controls) or to three pups per mother (overfed). At 5 months of age, the rats from reduced litters showed higher body weight and body fat than the controls. The hearts from these rats were perfused in a Langendorff system and subjected to 30 min of ischemia followed by 15 min of reperfusion (I/R). The myocardial contractility (dP/dt) and the coronary vasoconstriction to angiotensin II were lower, and the expression of the apoptotic marker was higher, in the hearts from overfed rats compared to controls. I/R reduced the myocardial contractily, the coronary vasoconstriction to angiotensin II and the vasodilatation to bradykinin, and increased the expression of (pro)renin receptor and of apoptotic and antiapoptotic markers, in both experimental groups. I/R also increased the expression of angiotensinogen in control but not in overfed rats. In summary, the results of this study suggest that early overnutrition induces reduced activity of the RAS and impairment of myocardial and coronary function in adult life, due to increased apoptosis. Ischemia-reperfusion produced myocardial and coronary impairment and apoptosis, which may be related to activation of RAS in control but not in overfed rats, and there may be protective mechanisms in both experimental groups.


Asunto(s)
Envejecimiento/patología , Corazón/fisiopatología , Hipernutrición/metabolismo , Sistema Renina-Angiotensina , Envejecimiento/metabolismo , Angiotensina II/sangre , Animales , Apoptosis/efectos de los fármacos , Apoptosis/genética , Biomarcadores/metabolismo , Bradiquinina/farmacología , Conducta Alimentaria/efectos de los fármacos , Regulación de la Expresión Génica/efectos de los fármacos , Hemodinámica/efectos de los fármacos , Técnicas In Vitro , Inflamación/patología , Leptina/sangre , Masculino , Miocardio/metabolismo , Miocardio/patología , Tamaño de los Órganos/efectos de los fármacos , Hipernutrición/sangre , Hipernutrición/fisiopatología , Perfusión , Ratas Sprague-Dawley , Sistema Renina-Angiotensina/efectos de los fármacos , Sistema Renina-Angiotensina/genética , Factores de Tiempo , Vasoconstricción/efectos de los fármacos , Vasodilatación/efectos de los fármacos
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...