Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 39
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
J Biol Chem ; 300(3): 105749, 2024 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-38354778

RESUMEN

Protein engineering and screening of processive fungal cellobiohydrolases (CBHs) remain challenging due to limited expression hosts, synergy-dependency, and recalcitrant substrates. In particular, glycoside hydrolase family 7 (GH7) CBHs are critically important for the bioeconomy and typically difficult to engineer. Here, we target the discovery of highly active natural GH7 CBHs and engineering of variants with improved activity. Using experimentally assayed activities of genome mined CBHs, we applied sequence and structural alignments to top performers to identify key point mutations linked to improved activity. From ∼1500 known GH7 sequences, an evolutionarily diverse subset of 57 GH7 CBH genes was expressed in Trichoderma reesei and screened using a multiplexed activity screening assay. Ten catalytically enhanced natural variants were identified, produced, purified, and tested for efficacy using industrially relevant conditions and substrates. Three key amino acids in CBHs with performance comparable or superior to Penicillium funiculosum Cel7A were identified and combinatorially engineered into P. funiculosum cel7a, expressed in T. reesei, and assayed on lignocellulosic biomass. The top performer generated using this combined approach of natural diversity genome mining, experimental assays, and computational modeling produced a 41% increase in conversion extent over native P. funiculosum Cel7A, a 55% increase over the current industrial standard T. reesei Cel7A, and 10% improvement over Aspergillus oryzae Cel7C, the best natural GH7 CBH previously identified in our laboratory.


Asunto(s)
Celulosa 1,4-beta-Celobiosidasa , Pruebas de Enzimas , Genoma Fúngico , Mutación , Ingeniería de Proteínas , Aspergillus oryzae/enzimología , Aspergillus oryzae/genética , Celulosa 1,4-beta-Celobiosidasa/química , Celulosa 1,4-beta-Celobiosidasa/clasificación , Celulosa 1,4-beta-Celobiosidasa/genética , Celulosa 1,4-beta-Celobiosidasa/metabolismo , Genoma Fúngico/genética , Ingeniería de Proteínas/métodos , Especificidad por Sustrato , Talaromyces/enzimología , Talaromyces/genética , Trichoderma/enzimología , Trichoderma/genética , Trichoderma/metabolismo , Biocatálisis
2.
Cell Biol Int ; 48(4): 521-540, 2024 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-38263578

RESUMEN

The ion channel two-pore channel 2 (TPC2), localised on the membranes of acidic organelles such as endo-lysosomes and melanosomes, has been shown to play a role in pathologies including cancer, and it is differently expressed in primary versus metastatic melanoma cells. Whether TPC2 plays a pro- or anti-oncogenic role in different tumour conditions is a relevant open question which we have explored in melanoma at different stages of tumour progression. The behaviour of primary melanoma cell line B16F0 and its metastatic subline B16F10 were compared in response to TPC2 modulation by silencing (by small interfering RNA), knock-out (by CRISPR/Cas9) and overexpression (by mCherry-TPC2 transfected plasmid). TPC2 silencing increased cell migration, epithelial-to-mesenchymal transition and autophagy in the metastatic samples, but abated them in the silenced primary ones. Interestingly, while TPC2 inactivation failed to affect markers of proliferation in both samples, it strongly enhanced the migratory behaviour of the metastatic cells, again suggesting that in the more aggressive phenotype TPC2 plays a specific antimetastatic role. In line with this, overexpression of TPC2 in B16F10 cells resulted in phenotype rescue, that is, a decrease in migratory ability, thus collectively resuming traits of the B16F0 primary cell line. Our research shows a novel role of TPC2 in melanoma cells that is intriguingly different in initial versus late stages of cancer progression.


Asunto(s)
Melanoma , Humanos , Melanoma/metabolismo , Canales de Dos Poros , Lisosomas/metabolismo , Línea Celular , Autofagia/fisiología , Calcio/metabolismo
3.
Explor Target Antitumor Ther ; 3(1): 11-26, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-36046354

RESUMEN

Aim: B-cell lymphoma-2 (Bcl-2)-like protein-10 (Bcl2L10) is the less studied member of Bcl-2 family proteins, with the controversial role in different cancer histotypes. Very recently, Bcl2L10 expression in melanoma tumor specimens and its role in melanoma response to therapy have been demonstrated. Here, the involvement of Bcl2L10 on the in vitro and in vivo properties associated with melanoma aggressive features has been investigated. Methods: Endogenous Bcl2L10 protein expression was detected by western blotting analysis in a panel of patient-derived and commercially available human melanoma cells. In vitro assays to evaluate clonogenicity, cell proliferation, cell migration, cell invasion, and in vitro capillary-like structure formation [vasculogenic mimicry (VM)] have been performed by using human melanoma cells stably overexpressing Bcl2L10 or transiently transfected for loss/gain function of Bcl2L10, grown under two- or three-dimensional (3D) conditions Xenograft melanoma model was employed to evaluate in vivo tumor growth and angiogenesis. Results: Results demonstrated that Bcl2L10 acts as an inducer of in vitro cell migration, invasion, and VM, while in vitro cell proliferation, in vivo tumor growth, as well as colony formation properties were not affected. Dissecting different signaling pathways, it was found that Bcl2L10 positively affects the phosphorylation of extracellular-signal-regulated kinase (ERK) and the expression of markers of cell invasion, such as urokinase plasminogen activator receptor (uPAR) and matrix metalloproteinases (MMPs). Of note, Bcl2L10-dependent in vitro migration, invasion, and VM are linked to uPAR. Bcl2L10 also negatively regulates the intracellular calcium level. Finally, reduced invasion capability in 3D spheroid invasion assay of melanoma cells transiently overexpressing Bcl2L10 was observed after treatment with inhibitors of MMPs and uPAR. Conclusions: Overall, data reported in this paper provide evidence supporting a positive role of Bcl2L10 in melanoma aggressive features.

4.
Cell Calcium ; 102: 102539, 2022 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-35074687

RESUMEN

In comparison with normal cells, cancer cells are equipped with a higher number of lysosomes, involved in degradative and non-degradative roles. In particular, the lysosome is a Ca2+signalling hub, and the enhancement of this interconnected machinery in cancer cells has recently prompted investigations into the role that lysosomal ion channels play in oncology. The present review reports findings about the emerging role of lysosomal Ca2+channels: Two-Pore Channels (TPCs), Transient Receptor Potential Cation Channels (TRPMLs; mucolipins), and Purinergic X Receptor 4 (P2×4R), in a variety of cancer models, highlighting their impact on crucial functions such as the regulation of autophagy and the composition of the tumour microenvironment, including the secretion-mediated interplay with immune and endothelial cells. Notably, recent evidence indicates that, by regulating tumour secretome, lysosomal Ca2+ signalling can affect the composition of the tumour-infiltrating immune cell repertoire. Intriguingly, the data so far available show that the protumoral/antitumoral role of lysosomal Ca2+ channels can differ according to the specific genetic context, types of cancer and the malignancy stage, and signals from the microenvironment.


Asunto(s)
Neoplasias , Canales de Potencial de Receptor Transitorio , Calcio/metabolismo , Señalización del Calcio , Endosomas/metabolismo , Células Endoteliales/metabolismo , Humanos , Lisosomas/metabolismo , Neoplasias/metabolismo , Canales de Potencial de Receptor Transitorio/metabolismo , Microambiente Tumoral
5.
Cells ; 10(5)2021 05 07.
Artículo en Inglés | MEDLINE | ID: mdl-34067054

RESUMEN

The flavonoid naringenin (Nar), present in citrus fruits and tomatoes, has been identified as a blocker of an emerging class of human intracellular channels, namely the two-pore channel (TPC) family, whose role has been established in several diseases. Indeed, Nar was shown to be effective against neoangiogenesis, a process essential for solid tumor progression, by specifically impairing TPC activity. The goal of the present review is to illustrate the rationale that links TPC channels to the mechanism of coronavirus infection, and how their inhibition by Nar could be an efficient pharmacological strategy to fight the current pandemic plague COVID-19.


Asunto(s)
Tratamiento Farmacológico de COVID-19 , Bloqueadores de los Canales de Calcio/farmacología , Canales de Calcio/metabolismo , Flavanonas/farmacología , Neoplasias/tratamiento farmacológico , Antineoplásicos/farmacología , Antineoplásicos/uso terapéutico , Antivirales/farmacología , Antivirales/uso terapéutico , Arabidopsis/metabolismo , COVID-19/epidemiología , COVID-19/patología , COVID-19/virología , Bloqueadores de los Canales de Calcio/uso terapéutico , Evaluación Preclínica de Medicamentos , Endosomas/efectos de los fármacos , Endosomas/metabolismo , Endosomas/virología , Flavanonas/uso terapéutico , Humanos , Lisosomas/efectos de los fármacos , Lisosomas/metabolismo , Lisosomas/virología , Neoplasias/irrigación sanguínea , Neoplasias/patología , Neovascularización Patológica/tratamiento farmacológico , Neovascularización Patológica/patología , Pandemias/prevención & control , SARS-CoV-2/patogenicidad , Vacuolas/metabolismo , Internalización del Virus/efectos de los fármacos
6.
Neoplasia ; 23(4): 415-428, 2021 04.
Artículo en Inglés | MEDLINE | ID: mdl-33839455

RESUMEN

Trop-2 is a transmembrane signal transducer that can induce cancer growth. Using antibody targeting and N-terminal Edman degradation, we show here that Trop-2 undergoes cleavage in the first thyroglobulin domain loop of its extracellular region, between residues R87 and T88. Molecular modeling indicated that this cleavage induces a profound rearrangement of the Trop-2 structure, which suggested a deep impact on its biological function. No Trop-2 cleavage was detected in normal human tissues, whereas most tumors showed Trop-2 cleavage, including skin, ovary, colon, and breast cancers. Coimmunoprecipitation and mass spectrometry analysis revealed that ADAM10 physically interacts with Trop-2. Immunofluorescence/confocal time-lapse microscopy revealed that the two molecules broadly colocalize at the cell membrane. We show that ADAM10 inhibitors, siRNAs and shRNAs abolish the processing of Trop-2, which indicates that ADAM10 is an effector protease. Proteolysis of Trop-2 at R87-T88 triggered cancer cell growth both in vitro and in vivo. A corresponding role was shown for metastatic spreading of colon cancer, as the R87A-T88A Trop-2 mutant abolished xenotransplant metastatic dissemination. Activatory proteolysis of Trop-2 was recapitulated in primary human breast cancers. Together with the prognostic impact of Trop-2 and ADAM10 on cancers of the skin, ovary, colon, lung, and pancreas, these data indicate a driving role of this activatory cleavage of Trop-2 on malignant progression of tumors.


Asunto(s)
Proteína ADAM10/metabolismo , Secretasas de la Proteína Precursora del Amiloide/metabolismo , Antígenos de Neoplasias/metabolismo , Moléculas de Adhesión Celular/metabolismo , Proliferación Celular/fisiología , Proteínas de la Membrana/metabolismo , Neoplasias/patología , Proteína ADAM10/antagonistas & inhibidores , Proteína ADAM10/genética , Secuencia de Aminoácidos/genética , Secretasas de la Proteína Precursora del Amiloide/antagonistas & inhibidores , Secretasas de la Proteína Precursora del Amiloide/genética , Animales , Línea Celular Tumoral , Membrana Celular/metabolismo , Células Epiteliales/metabolismo , Células HCT116 , Células HT29 , Humanos , Células MCF-7 , Proteínas de la Membrana/antagonistas & inhibidores , Proteínas de la Membrana/genética , Ratones , Ratones Endogámicos BALB C , Modelos Moleculares , Metástasis de la Neoplasia/patología , Trasplante de Neoplasias , Proteolisis , Transducción de Señal , Trasplante Heterólogo
7.
Metab Eng ; 65: 111-122, 2021 05.
Artículo en Inglés | MEDLINE | ID: mdl-33741529

RESUMEN

Valorization of lignin, an abundant component of plant cell walls, is critical to enabling the lignocellulosic bioeconomy. Biological funneling using microbial biocatalysts has emerged as an attractive approach to convert complex mixtures of lignin depolymerization products to value-added compounds. Ideally, biocatalysts would convert aromatic compounds derived from the three canonical types of lignin: syringyl (S), guaiacyl (G), and p-hydroxyphenyl (H). Pseudomonas putida KT2440 (hereafter KT2440) has been developed as a biocatalyst owing in part to its native catabolic capabilities but is not known to catabolize S-type lignin-derived compounds. Here, we demonstrate that syringate, a common S-type lignin-derived compound, is utilized by KT2440 only in the presence of another energy source or when vanAB was overexpressed, as syringate was found to be O-demethylated to gallate by VanAB, a two-component monooxygenase, and further catabolized via extradiol cleavage. Unexpectedly, the specificity (kcat/KM) of VanAB for syringate was within 25% that for vanillate and O-demethylation of both substrates was well-coupled to O2 consumption. However, the native KT2440 gallate-cleaving dioxygenase, GalA, was potently inactivated by 3-O-methylgallate. To engineer a biocatalyst to simultaneously convert S-, G-, and H-type monomers, we therefore employed VanAB from Pseudomonas sp. HR199, which has lower activity for 3MGA, and LigAB, an extradiol dioxygenase able to cleave protocatechuate and 3-O-methylgallate. This strain converted 93% of a mixture of lignin monomers to 2-pyrone-4,6-dicarboxylate, a promising bio-based chemical. Overall, this study elucidates a native pathway in KT2440 for catabolizing S-type lignin-derived compounds and demonstrates the potential of this robust chassis for lignin valorization.


Asunto(s)
Pseudomonas putida , Lignina , Pseudomonas putida/genética , Pironas
8.
Front Cell Dev Biol ; 9: 629182, 2021.
Artículo en Inglés | MEDLINE | ID: mdl-33614661

RESUMEN

Oleic acid (OA) is a component of the olive oil. Beneficial health effects of olive oil are well-known, such as protection against liver steatosis and against some cancer types. In the present study, we focused on OA effects in hepatocellular carcinoma (HCC), investigating responses to OA treatment (50-300 µM) in HCC cell lines (Hep3B and Huh7.5) and in a healthy liver-derived human cell line (THLE-2). Upon OA administration higher lipid accumulation, perilipin-2 increase, and autophagy reduction were observed in HCC cells as compared to healthy cells. OA in the presence of 10% FBS significantly reduced viability of HCC cell lines at 300 µM through Alamar Blue staining evaluation, and reduced cyclin D1 expression in a dose-dependent manner while it was ineffective on healthy hepatocytes. Furthermore, OA increased cell death by about 30%, inducing apoptosis and necrosis in HCC cells but not in healthy hepatocytes at 300 µM dosage. Moreover, OA induced senescence in Hep3B, reduced P-ERK in both HCC cell lines and significantly inhibited the antiapoptotic proteins c-Flip and Bcl-2 in HCC cells but not in healthy hepatocytes. All these results led us to conclude that different cell death processes occur in these two HCC cell lines upon OA treatment. Furthermore, 300 µM OA significantly reduced the migration and invasion of both HCC cell lines, while it has no effects on healthy cells. Finally, we investigated autophagy role in OA-dependent effects by using the autophagy inducer torin-1. Combined OA/torin-1 treatment reduced lipid accumulation and cell death as compared to single OA treatment. We therefore concluded that OA effects in HCC cells lines are, at least, in part dependent on OA-induced autophagy reduction. In conclusion, we report for the first time an autophagy dependent relevant anti-cancer effect of OA in human hepatocellular carcinoma cell lines.

9.
Biotechnol Biofuels ; 14(1): 6, 2021 Jan 06.
Artículo en Inglés | MEDLINE | ID: mdl-33407766

RESUMEN

Consolidated bioprocessing using oleaginous yeast is a promising modality for the economic conversion of plant biomass to fuels and chemicals. However, yeast are not known to produce effective biomass degrading enzymes naturally and this trait is essential for efficient consolidated bioprocessing. We expressed a chimeric cellobiohydrolase I gene in three different oleaginous, industrially relevant yeast: Yarrowia lipolytica, Lipomyces starkeyi, and Saccharomyces cerevisiae to study the biochemical and catalytic properties and biomass deconstruction potential of these recombinant enzymes. Our results showed differences in glycosylation, surface charge, thermal and proteolytic stability, and efficacy of biomass digestion. L. starkeyi was shown to be an inferior active cellulase producer compared to both the Y. lipolytica and S. cerevisiae enzymes, whereas the cellulase expressed in S. cerevisiae displayed the lowest activity against dilute-acid-pretreated corn stover. Comparatively, the chimeric cellobiohydrolase I enzyme expressed in Y. lipolytica was found to have a lower extent of glycosylation, better protease stability, and higher activity against dilute-acid-pretreated corn stover.

11.
Anticancer Res ; 40(10): 5379-5391, 2020 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-32988857

RESUMEN

BACKGROUND/AIM: Hypoxia-inducible factor 1 (HIF1) inhibitors have been proposed as therapeutic agents for several tumor types. HIF1α is induced by hypoxia and by pathogens in normoxia through toll-like receptors (TLRs). The TLR3 activator polyinosinic:polycytidylic acid [poly(I:C)] induces apoptosis in various types of cancer but not in the most aggressive breast cancer cell lines. We hypothesized that the failure of TLR3 stimulation to induce apoptosis in these cells might be due to an elevated HIF1α level and this link might be exploited. MATERIALS AND METHODS: Poly(I:C)-induced signaling pathway and expression of HIF1α and HIF1α targets were studied in MDA MB-231 and MCF-7 breast cancer cell lines by western blot. Flow cytometry was used for apoptotic responses and vasculogenic mimicry as bioassay. RESULTS: Poly(I:C) increased expression of HIF1α and its targets BCL2 apoptosis regulator and c-MYC. Moreover, using pharmacological or genetic HIF1 inhibition, reduction of poly(I:C)-induced expression of HIF1α was paralleled by lowering of c-MYC and increased sensitivity to poly(I:C)-induced apoptosis, demonstrating the crucial role of this factor. We provide the first evidence in breast cancer cells that TLR3 stimulation induces HIF1α-dependent vasculogenic mimicry. By using specific inhibitors, we identified a signaling cascade upstream of HIF1α induction. CONCLUSION: Combined treatment with poly(I:C) and HIF1 inhibitors deserves consideration as an effective strategy in breast cancer therapy.


Asunto(s)
Neoplasias de la Mama/tratamiento farmacológico , Subunidad alfa del Factor 1 Inducible por Hipoxia/genética , Poli I-C/farmacología , Receptor Toll-Like 3/genética , Apoptosis/efectos de los fármacos , Neoplasias de la Mama/genética , Neoplasias de la Mama/patología , Proliferación Celular/efectos de los fármacos , Femenino , Citometría de Flujo , Regulación Neoplásica de la Expresión Génica/efectos de los fármacos , Humanos , Células MCF-7 , Proteínas Proto-Oncogénicas c-bcl-2/genética , Proteínas Proto-Oncogénicas c-myc/genética , Transducción de Señal/efectos de los fármacos , Receptor Toll-Like 3/agonistas
12.
Cancers (Basel) ; 12(9)2020 Aug 24.
Artículo en Inglés | MEDLINE | ID: mdl-32846966

RESUMEN

Melanoma is one of the most aggressive and treatment-resistant human cancers. The two-pore channel 2 (TPC2) is located on late endosomes, lysosomes and melanosomes. Here, we characterized how TPC2 knockout (KO) affected human melanoma cells derived from a metastatic site. TPC2 KO increased these cells' ability to invade the extracelullar matrix and was associated with the increased expression of mesenchymal markers ZEB-1, Vimentin and N-Cadherin, and the enhanced secretion of MMP9. TPC2 KO also activated genes regulated by YAP/TAZ, which are key regulators of tumourigenesis and metastasis. Expression levels of ORAI1, a component of store-operated Ca2+ entry (SOCE), and PKC-ßII, part of the HIPPO pathway that negatively regulates YAP/TAZ activity, were reduced by TPC2 KO and RNA interference knockdown. We propose a cellular mechanism mediated by ORAI1/Ca2+/PKC-ßII to explain these findings. Highlighting their potential clinical significance, patients with metastatic tumours showed a reduction in TPC2 expression. Our research indicates a novel role of TPC2 in melanoma. While TPC2 loss may not activate YAP/TAZ target genes in primary melanoma, in metastatic melanoma it could activate such genes and increase cancer aggressiveness. These findings aid the understanding of tumourigenesis mechanisms and could provide new diagnostic and treatment strategies for skin cancer and other metastatic cancers.

14.
Proc Natl Acad Sci U S A ; 117(17): 9302-9310, 2020 04 28.
Artículo en Inglés | MEDLINE | ID: mdl-32245809

RESUMEN

Lignin is an abundant and recalcitrant component of plant cell walls. While lignin degradation in nature is typically attributed to fungi, growing evidence suggests that bacteria also catabolize this complex biopolymer. However, the spatiotemporal mechanisms for lignin catabolism remain unclear. Improved understanding of this biological process would aid in our collective knowledge of both carbon cycling and microbial strategies to valorize lignin to value-added compounds. Here, we examine lignin modifications and the exoproteome of three aromatic-catabolic bacteria: Pseudomonas putida KT2440, Rhodoccocus jostii RHA1, and Amycolatopsis sp. ATCC 39116. P. putida cultivation in lignin-rich media is characterized by an abundant exoproteome that is dynamically and selectively packaged into outer membrane vesicles (OMVs). Interestingly, many enzymes known to exhibit activity toward lignin-derived aromatic compounds are enriched in OMVs from early to late stationary phase, corresponding to the shift from bioavailable carbon to oligomeric lignin as a carbon source. In vivo and in vitro experiments demonstrate that enzymes contained in the OMVs are active and catabolize aromatic compounds. Taken together, this work supports OMV-mediated catabolism of lignin-derived aromatic compounds as an extracellular strategy for nutrient acquisition by soil bacteria and suggests that OMVs could potentially be useful tools for synthetic biology and biotechnological applications.


Asunto(s)
Lignina/metabolismo , Pseudomonas putida/enzimología , Vesículas Secretoras/metabolismo , Proteínas de la Membrana Bacteriana Externa/metabolismo , Pseudomonas putida/metabolismo
15.
Int J Mol Sci ; 20(18)2019 Sep 12.
Artículo en Inglés | MEDLINE | ID: mdl-31547344

RESUMEN

Endothelial cells (ECs) constitute the innermost layer that lines all blood vessels from the larger arteries and veins to the smallest capillaries, including the lymphatic vessels. Despite the histological classification of endothelium of a simple epithelium and its homogeneous morphological appearance throughout the vascular system, ECs, instead, are extremely heterogeneous both structurally and functionally. The different arrangement of cell junctions between ECs and the local organization of the basal membrane generate different type of endothelium with different permeability features and functions. Continuous, fenestrated and discontinuous endothelia are distributed based on the specific function carried out by the organs. It is thought that a large number ECs functions and their responses to extracellular cues depend on changes in intracellular concentrations of calcium ion ([Ca2+]i). The extremely complex calcium machinery includes plasma membrane bound channels as well as intracellular receptors distributed in distinct cytosolic compartments that act jointly to maintain a physiological [Ca2+]i, which is crucial for triggering many cellular mechanisms. Here, we first survey the overall notions related to intracellular Ca2+ mobilization and later highlight the involvement of this second messenger in crucial ECs functions with the aim at stimulating further investigation that link Ca2+ mobilization to ECs in health and disease.


Asunto(s)
Señalización del Calcio , Calcio/metabolismo , Células Endoteliales/metabolismo , Animales , Canales de Calcio/metabolismo , Cationes Bivalentes/metabolismo , Células Endoteliales/patología , Humanos , Inflamación/metabolismo , Inflamación/patología , Neovascularización Patológica/metabolismo , Neovascularización Patológica/patología , Neovascularización Fisiológica
16.
Oncotarget ; 9(56): 30905-30918, 2018 Jul 20.
Artículo en Inglés | MEDLINE | ID: mdl-30112117

RESUMEN

In human prostate cancer (PCa), the neuroendocrine cells, expressing the prostate cancer stem cell (CSC) marker CD44, may be resistant to androgen ablation and promote tumor recurrence. During the study of heterogeneity of the highly aggressive neuroendocrine PCa cell lines PC3 and DU-145, we isolated and expanded in vitro a minor subpopulation of very small cells lacking CD44 (CD44neg). Unexpectedly, these sorted CD44neg cells rapidly and spontaneously converted to a stable CD44high phenotype specifically expressing the CD44v8-10 isoform which the sorted CD44high subpopulation failed to express. Surprisingly and potentially interesting, in these cells expression of CD44v8-10 was found to be induced in stem cell medium. CD44 variant isoforms are known to be more expressed in CSC and metastatic cells than CD44 standard isoform. In agreement, functional analysis of the two sorted and cultured subpopulations has shown that the CD44v8-10pos PC3 cells, resulting from the conversion of the CD44neg subpopulation, were more invasive in vitro and had a higher clonogenic potential than the sorted CD44high cells, in that they produced mainly holoclones, known to be enriched in stem-like cells. Of interest, the CD44v8-10 is more expressed in human PCa biopsies than in normal gland. The discovery of CD44v8-10pos cells with stem-like and invasive features, derived from a minoritarian CD44neg cell population in PCa, alerts on the high plasticity of stem-like markers and urges for prudency on the approaches to targeting the putative CSC.

17.
Proc Natl Acad Sci U S A ; 115(19): E4350-E4357, 2018 05 08.
Artículo en Inglés | MEDLINE | ID: mdl-29666242

RESUMEN

Poly(ethylene terephthalate) (PET) is one of the most abundantly produced synthetic polymers and is accumulating in the environment at a staggering rate as discarded packaging and textiles. The properties that make PET so useful also endow it with an alarming resistance to biodegradation, likely lasting centuries in the environment. Our collective reliance on PET and other plastics means that this buildup will continue unless solutions are found. Recently, a newly discovered bacterium, Ideonella sakaiensis 201-F6, was shown to exhibit the rare ability to grow on PET as a major carbon and energy source. Central to its PET biodegradation capability is a secreted PETase (PET-digesting enzyme). Here, we present a 0.92 Å resolution X-ray crystal structure of PETase, which reveals features common to both cutinases and lipases. PETase retains the ancestral α/ß-hydrolase fold but exhibits a more open active-site cleft than homologous cutinases. By narrowing the binding cleft via mutation of two active-site residues to conserved amino acids in cutinases, we surprisingly observe improved PET degradation, suggesting that PETase is not fully optimized for crystalline PET degradation, despite presumably evolving in a PET-rich environment. Additionally, we show that PETase degrades another semiaromatic polyester, polyethylene-2,5-furandicarboxylate (PEF), which is an emerging, bioderived PET replacement with improved barrier properties. In contrast, PETase does not degrade aliphatic polyesters, suggesting that it is generally an aromatic polyesterase. These findings suggest that additional protein engineering to increase PETase performance is realistic and highlight the need for further developments of structure/activity relationships for biodegradation of synthetic polyesters.


Asunto(s)
Proteínas Bacterianas/química , Burkholderiales/enzimología , Esterasas/química , Tereftalatos Polietilenos/química , Proteínas Bacterianas/genética , Burkholderiales/genética , Cristalografía por Rayos X , Esterasas/genética , Ingeniería de Proteínas , Especificidad por Sustrato
18.
Nat Commun ; 9(1): 1186, 2018 03 22.
Artículo en Inglés | MEDLINE | ID: mdl-29567941

RESUMEN

Glycoside Hydrolase Family 7 cellobiohydrolases (GH7 CBHs) catalyze cellulose depolymerization in cellulolytic eukaryotes, making them key discovery and engineering targets. However, there remains a lack of robust structure-activity relationships for these industrially important cellulases. Here, we compare CBHs from Trichoderma reesei (TrCel7A) and Penicillium funiculosum (PfCel7A), which exhibit a multi-modular architecture consisting of catalytic domain (CD), carbohydrate-binding module, and linker. We show that PfCel7A exhibits 60% greater performance on biomass than TrCel7A. To understand the contribution of each domain to this improvement, we measure enzymatic activity for a library of CBH chimeras with swapped subdomains, demonstrating that the enhancement is mainly caused by PfCel7A CD. We solve the crystal structure of PfCel7A CD and use this information to create a second library of TrCel7A CD mutants, identifying a TrCel7A double mutant with near-equivalent activity to wild-type PfCel7A. Overall, these results reveal CBH regions that enable targeted activity improvements.


Asunto(s)
Celulosa 1,4-beta-Celobiosidasa/genética , Celulosa 1,4-beta-Celobiosidasa/metabolismo , Proteínas Fúngicas/genética , Proteínas Fúngicas/metabolismo , Penicillium/enzimología , Trichoderma/enzimología , Dominio Catalítico , Celulosa 1,4-beta-Celobiosidasa/química , Proteínas Fúngicas/química , Cinética , Simulación de Dinámica Molecular , Penicillium/química , Penicillium/genética , Conformación Proteica , Ingeniería de Proteínas , Trichoderma/química , Trichoderma/genética
19.
Biotechnol Biofuels ; 11: 5, 2018.
Artículo en Inglés | MEDLINE | ID: mdl-29344086

RESUMEN

BACKGROUND: The ascomycete fungus Trichoderma reesei is the predominant source of enzymes for industrial conversion of lignocellulose. Its glycoside hydrolase family 7 cellobiohydrolase (GH7 CBH) TreCel7A constitutes nearly half of the enzyme cocktail by weight and is the major workhorse in the cellulose hydrolysis process. The orthologs from Trichoderma atroviride (TatCel7A) and Trichoderma harzianum (ThaCel7A) show high sequence identity with TreCel7A, ~ 80%, and represent naturally evolved combinations of cellulose-binding tunnel-enclosing loop motifs, which have been suggested to influence intrinsic cellobiohydrolase properties, such as endo-initiation, processivity, and off-rate. RESULTS: The TatCel7A, ThaCel7A, and TreCel7A enzymes were characterized for comparison of function. The catalytic domain of TatCel7A was crystallized, and two structures were determined: without ligand and with thio-cellotriose in the active site. Initial hydrolysis of bacterial cellulose was faster with TatCel7A than either ThaCel7A or TreCel7A. In synergistic saccharification of pretreated corn stover, both TatCel7A and ThaCel7A were more efficient than TreCel7A, although TatCel7A was more sensitive to thermal inactivation. Structural analyses and molecular dynamics (MD) simulations were performed to elucidate important structure/function correlations. Moreover, reverse conservation analysis (RCA) of sequence diversity revealed divergent regions of interest located outside the cellulose-binding tunnel of Trichoderma spp. GH7 CBHs. CONCLUSIONS: We hypothesize that the combination of loop motifs is the main determinant for the observed differences in Cel7A activity on cellulosic substrates. Fine-tuning of the loop flexibility appears to be an important evolutionary target in Trichoderma spp., a conclusion supported by the RCA data. Our results indicate that, for industrial use, it would be beneficial to combine loop motifs from TatCel7A with the thermostability features of TreCel7A. Furthermore, one region implicated in thermal unfolding is suggested as a primary target for protein engineering.

20.
Proc Natl Acad Sci U S A ; 114(52): 13667-13672, 2017 12 26.
Artículo en Inglés | MEDLINE | ID: mdl-29229855

RESUMEN

In nature, many microbes secrete mixtures of glycoside hydrolases, oxidoreductases, and accessory enzymes to deconstruct polysaccharides and lignin in plants. These enzymes are often decorated with N- and O-glycosylation, the roles of which have been broadly attributed to protection from proteolysis, as the extracellular milieu is an aggressive environment. Glycosylation has been shown to sometimes affect activity, but these effects are not fully understood. Here, we examine N- and O-glycosylation on a model, multimodular glycoside hydrolase family 7 cellobiohydrolase (Cel7A), which exhibits an O-glycosylated carbohydrate-binding module (CBM) and an O-glycosylated linker connected to an N- and O-glycosylated catalytic domain (CD)-a domain architecture common to many biomass-degrading enzymes. We report consensus maps for Cel7A glycosylation that include glycan sites and motifs. Additionally, we examine the roles of glycans on activity, substrate binding, and thermal and proteolytic stability. N-glycan knockouts on the CD demonstrate that N-glycosylation has little impact on cellulose conversion or binding, but does have major stability impacts. O-glycans on the CBM have little impact on binding, proteolysis, or activity in the whole-enzyme context. However, linker O-glycans greatly impact cellulose conversion via their contribution to proteolysis resistance. Molecular simulations predict an additional role for linker O-glycans, namely that they are responsible for maintaining separation between ordered domains when Cel7A is engaged on cellulose, as models predict α-helix formation and decreased cellulose interaction for the nonglycosylated linker. Overall, this study reveals key roles for N- and O-glycosylation that are likely broadly applicable to other plant cell-wall-degrading enzymes.


Asunto(s)
Celulasa/metabolismo , Polisacáridos/metabolismo , Celulasa/química , Activación Enzimática , Estabilidad de Enzimas , Glicósido Hidrolasas/química , Glicósido Hidrolasas/metabolismo , Glicosilación , Proteínas Intrínsecamente Desordenadas/química , Proteínas Intrínsecamente Desordenadas/metabolismo , Modelos Moleculares , Conformación Molecular , Polisacáridos/química , Proteolisis , Temperatura de Transición
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA