Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 12 de 12
Filtrar
Más filtros











Base de datos
Intervalo de año de publicación
1.
Nutrients ; 16(15)2024 Jul 24.
Artículo en Inglés | MEDLINE | ID: mdl-39125280

RESUMEN

Postbiotics are defined as a preparation of inanimate microorganisms and/or their components that confers a health benefit to the host. They range from cell wall fragments to metabolites, bacterial lysates, extracellular vesicles, and short-chain fatty acids (SCFAs). Postbiotics may influence carcinogenesis via a variety of mechanisms. They can promote homeostatic immune responses, reduce inflammation, induce selective cytotoxicity against tumor cells, as well as the enabling the control of tumor cell proliferation and enhancing intestinal epithelial barrier function. Therefore, probiotics can serve as an adjunct strategy in anticancer treatment together with chemotherapy and immunotherapy. Up to now, the only relevant postbiotics used as interventions in oncological patients remain vitamin K molecules, with few phase-II and III trials available. In fact, postbiotics' levels are strictly dependent on the gut microbiota's composition, which may vary between individuals and can be altered under different physiological and pathological conditions. Therefore, the lack of consistent clinical evidence supporting postbiotics' efficacy is due to their poor bioavailability, short half-life, and fluctuating levels. Synbiotics, a mixture of prebiotics and probiotics, are expected to have a more homogeneous bioavailability with respect to postbiotics and may have greater potential for future development. In this review, we focus on the role of postbiotics as an adjuvant therapy in cancer treatment.


Asunto(s)
Microbioma Gastrointestinal , Neoplasias , Probióticos , Humanos , Neoplasias/terapia , Probióticos/uso terapéutico , Prebióticos/administración & dosificación , Simbióticos/administración & dosificación
2.
Gut Microbes ; 16(1): 2388801, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-39132842

RESUMEN

The interaction between the gut microbiota and invariant Natural Killer T (iNKT) cells plays a pivotal role in colorectal cancer (CRC). The pathobiont Fusobacterium nucleatum influences the anti-tumor functions of CRC-infiltrating iNKT cells. However, the impact of other bacteria associated with CRC, like Porphyromonas gingivalis, on their activation status remains unexplored. In this study, we demonstrate that mucosa-associated P. gingivalis induces a protumour phenotype in iNKT cells, subsequently influencing the composition of mononuclear-phagocyte cells within the tumor microenvironment. Mechanistically, in vivo and in vitro experiments showed that P. gingivalis reduces the cytotoxic functions of iNKT cells, hampering the iNKT cell lytic machinery through increased expression of chitinase 3-like-1 protein (CHI3L1). Neutralization of CHI3L1 effectively restores iNKT cell cytotoxic functions suggesting a therapeutic potential to reactivate iNKT cell-mediated antitumour immunity. In conclusion, our data demonstrate how P. gingivalis accelerates CRC progression by inducing the upregulation of CHI3L1 in iNKT cells, thus impairing their cytotoxic functions and promoting host tumor immune evasion.


Asunto(s)
Proteína 1 Similar a Quitinasa-3 , Neoplasias Colorrectales , Células T Asesinas Naturales , Porphyromonas gingivalis , Neoplasias Colorrectales/inmunología , Neoplasias Colorrectales/microbiología , Células T Asesinas Naturales/inmunología , Porphyromonas gingivalis/inmunología , Proteína 1 Similar a Quitinasa-3/metabolismo , Proteína 1 Similar a Quitinasa-3/genética , Humanos , Animales , Ratones , Microambiente Tumoral/inmunología , Evasión Inmune , Escape del Tumor , Microbioma Gastrointestinal/inmunología , Línea Celular Tumoral , Infecciones por Bacteroidaceae/inmunología , Infecciones por Bacteroidaceae/microbiología , Femenino , Ratones Endogámicos C57BL , Masculino
3.
Int J Mol Sci ; 25(12)2024 Jun 17.
Artículo en Inglés | MEDLINE | ID: mdl-38928361

RESUMEN

Migraine is a common and debilitating neurological disorder characterized by the recurrent attack of pulsating headaches typically localized on one side of the head associated with other disabling symptoms, such as nausea, increased sensitivity to light, sound and smell and mood changes. Various clinical factors, including the excessive use of migraine medication, inadequate acute treatment and stressful events, can contribute to the worsening of the condition, which may evolve to chronic migraine, that is, a headache present on >15 days/month for at least 3 months. Chronic migraine is frequently associated with various comorbidities, including anxiety and mood disorders, particularly depression, which complicate the prognosis, response to treatment and overall clinical outcomes. Emerging research indicates a connection between alterations in the composition of the gut microbiota and mental health conditions, particularly anxiety and depression, which are considered disorders of the gut-brain axis. This underscores the potential of modulating the gut microbiota as a new avenue for managing these conditions. In this context, it is interesting to investigate whether migraine, particularly in its chronic form, exhibits a dysbiosis profile similar to that observed in individuals with anxiety and depression. This could pave the way for interventions aimed at modulating the gut microbiota for treating difficult-to-manage migraines.


Asunto(s)
Microbioma Gastrointestinal , Trastornos Migrañosos , Humanos , Trastornos Migrañosos/microbiología , Trastornos Migrañosos/terapia , Trastornos Migrañosos/psicología , Eje Cerebro-Intestino , Ansiedad/microbiología , Depresión/microbiología , Disbiosis/microbiología , Animales
4.
J Gastrointest Cancer ; 55(2): 662-678, 2024 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-38411876

RESUMEN

PURPOSE: Stomach and esophageal cancers are among the highest mortality from cancers worldwide. Microbiota has an interplaying role within the human gastrointestinal (GI) tract. Dysbiosis occurs when a disruption of the balance between the microbiota and the host happens. With this narrative review, we discuss the main alterations in the microbiome of gastroesophageal cancer, revealing its potential role in the pathogenesis, early detection, and treatment. RESULTS: Helicobacter pylori plays a major role the development of a cascade of preneoplastic conditions ranging from atrophic gastritis to metaplasia and dysplasia, ultimately culminating in gastric cancer, while other pathogenic agents are Fusobacterium nucleatum, Bacteroides fragilis, Escherichia coli, and Lactobacillus. Campylobacter species (spp.)'s role in the progression of esophageal adenocarcinoma may parallel that of Helicobacter pylori in the context of gastric cancer, with other esophageal carcinogenic agents being Escherichia coli, Bacteroides fragilis, and Fusobacterium nucleatum. Moreover, gut microbiome could significantly alter the outcomes of chemotherapy and immunotherapy. The gut microbiome can be modulated through interventions such as antibiotics, probiotics, or prebiotics intake. Fecal microbiota transplantation has emerged as a therapeutic strategy as well. CONCLUSIONS: Nowadays, it is widely accepted that changes in the normal gut microbiome causing dysbiosis and immune dysregulation play a role gastroesophageal cancer. Different interventions, including probiotics and prebiotics intake are being developed to improve therapeutic outcomes and mitigate toxicities associated with anticancer treatment. Further studies are required in order to introduce the microbiome among the available tools of precision medicine in the field of anticancer treatment.


Asunto(s)
Disbiosis , Neoplasias Esofágicas , Microbioma Gastrointestinal , Neoplasias Gástricas , Humanos , Neoplasias Esofágicas/microbiología , Neoplasias Esofágicas/terapia , Neoplasias Esofágicas/diagnóstico , Neoplasias Esofágicas/patología , Neoplasias Gástricas/microbiología , Neoplasias Gástricas/terapia , Neoplasias Gástricas/diagnóstico , Neoplasias Gástricas/patología , Disbiosis/diagnóstico , Disbiosis/microbiología , Disbiosis/terapia , Probióticos/uso terapéutico , Probióticos/administración & dosificación , Adenocarcinoma/microbiología , Adenocarcinoma/terapia , Adenocarcinoma/diagnóstico , Adenocarcinoma/patología
5.
J Pers Med ; 13(9)2023 Aug 28.
Artículo en Inglés | MEDLINE | ID: mdl-37763093

RESUMEN

Gastric cancer ranks as the fifth-leading contributor to global cancer incidence and the fourth-highest in terms of cancer-related mortality. Helicobacter pylori (H. pylori) infection leads to inflammation and ulceration, atrophic and chronic gastritis, and eventually, increases the risk of developing gastric adenocarcinoma. In this paper, we delve into the combined impact of a high-salt diet (HSD) and concurrent H. pylori infection, which act as predisposing factors for gastric malignancy. A multitude of mechanisms come into play, fostering the development of gastric adenocarcinoma due to the synergy between an HSD and H. pylori colonization. These encompass the disruption of mucosal barriers, cellular integrity, modulation of H. pylori gene expression, oxidative stress induction, and provocation of inflammatory responses. On the whole, gastric cancer patients were reported to have a higher median sodium intake with respect to healthy controls. H. pylori infection constitutes an additional risk factor, with a particular impact on the population with the highest daily sodium intake. Consequently, drawing from epidemiological discoveries, substantial evidence suggests that diminishing salt intake and employing antibacterial therapeutics could potentially lower the susceptibility to gastric cancer among individuals.

6.
Mucosal Immunol ; 16(3): 326-340, 2023 06.
Artículo en Inglés | MEDLINE | ID: mdl-37004750

RESUMEN

iNKT cells account for a relevant fraction of effector T-cells in the intestine and are considered an attractive platform for cancer immunotherapy. Although iNKT cells are cytotoxic lymphocytes, their functional role in colorectal cancer (CRC) is still controversial, limiting their therapeutic use. Thus, we examined the immune cell composition and iNKT cell phenotype of CRC lesions in patients (n = 118) and different murine models. High-dimensional single-cell flow-cytometry, metagenomics, and RNA sequencing experiments revealed that iNKT cells are enriched in tumor lesions. The tumor-associated pathobiont Fusobacterium nucleatum induces IL-17 and Granulocyte-macrophage colony-stimulating factor (GM-CSF) expression in iNKT cells without affecting their cytotoxic capability but promoting iNKT-mediated recruitment of neutrophils with polymorphonuclear myeloid-derived suppressor cells-like phenotype and functions. The lack of iNKT cells reduced the tumor burden and recruitment of immune suppressive neutrophils. iNKT cells in-vivo activation with α-galactosylceramide restored their anti-tumor function, suggesting that iNKT cells can be modulated to overcome CRC-associated immune evasion. Tumor co-infiltration by iNKT cells and neutrophils correlates with negative clinical outcomes, highlighting the importance of iNKT cells in the pathophysiology of CRC. Our results reveal a functional plasticity of iNKT cells in CRC, suggesting a pivotal role of iNKT cells in shaping the tumor microenvironment, with relevant implications for treatment.


Asunto(s)
Antineoplásicos , Neoplasias Colorrectales , Células T Asesinas Naturales , Ratones , Animales , Neutrófilos , Antineoplásicos/farmacología , Inmunoterapia , Neoplasias Colorrectales/patología , Microambiente Tumoral
7.
Curr Opin Pharmacol ; 67: 102315, 2022 12.
Artículo en Inglés | MEDLINE | ID: mdl-36351361

RESUMEN

Our understanding of the gut microbiota has significantly evolved over the last two decades. Advances in the analysis of the gut microbiome continues to reveal complex microbial communities and discoveries about their role in health and diseases, including cancer development, are continuously growing. In addition, research has demonstrated that the use of antibiotics can modulate the gut microbiota composition negatively and influence cancer treatment outcomes, suggesting that antibiotics should be avoided if possible. In this article, we review the role of the gut microbiota in the formation of GI cancers. We show that specific bacterial populations can positively or negatively affect cancer formation with specific attention given to gastric and colorectal cancer. We also review the role of microbial-targeted therapies on cancer treatment outcomes.


Asunto(s)
Microbioma Gastrointestinal , Neoplasias Gastrointestinales , Microbiota , Humanos , Antibacterianos/uso terapéutico , Neoplasias Gastrointestinales/tratamiento farmacológico , Neoplasias Gastrointestinales/microbiología
8.
Semin Immunol ; 59: 101599, 2022 01.
Artículo en Inglés | MEDLINE | ID: mdl-35304068

RESUMEN

Gut microbiota has been shown to systemically shape the immunological landscape, modulate homeostasis and play a role in both health and disease. Dysbiosis of gut microbiota promotes inflammation and contributes to the pathogenesis of several major disorders in gastrointestinal tract, metabolic, neurological and respiratory diseases. Much effort is now focused on understanding host-microbes interactions and new microbiota-targeted therapies are deeply investigated as a means to restore health or prevent disease. This review details the immunoregulatory role of the gut microbiota in health and disease and discusses the most recent strategies in manipulating individual patient's microbiota for the management and prevention of inflammatory conditions.


Asunto(s)
Microbioma Gastrointestinal , Microbiota , Humanos , Disbiosis/terapia , Inflamación/terapia , Tracto Gastrointestinal
9.
Cells ; 11(4)2022 02 16.
Artículo en Inglés | MEDLINE | ID: mdl-35203339

RESUMEN

Neuroendocrine neoplasms (NENs) are rare neoplasms with heterogeneous clinical behavior. Alteration in human microbiota was reported in association with carcinogenesis in different solid tumors. However, few studies addressed the role of microbiota in NEN. We here aimed at evaluating the presence of bacterial infiltration in neuroendocrine tumoral tissue. To assess the presence of bacteria, 20 specimens from pancreatic NEN (pan-NEN) and 20 from intestinal NEN (I-NEN) were evaluated through Fluorescent In situ Hybridization and confocal microscopy. Demographic data, pre-operative investigations, operative findings, pathological diagnosis, follow-up, and survival data were evaluated. Among I-NEN, bacteria were detected in 15/20 (75%) specimens, with high variability in microbial distribution. In eight patients, a high infiltration of microorganisms was observed. Among pan-NEN, 18/20 (90%) showed microorganisms' infiltration, with a homogeneous microbial distribution. Bacterial localization in pan-NEN was observed in the proximity of blood vessels. A higher bacterial infiltration in the tumoral specimen as compared with non-tumoral tissue was reported in 10/20 pan-NEN (50%). No significant differences were observed in mean bacterial count according to age, sex, ki67%, site, tumor stage. Mean bacterial count did not result to be a predictor of disease-specific survival. This preliminary study demonstrates the presence of a significant microbiota in the NEN microenvironment. Further research is needed to investigate the potential etiological or clinical role of microbiota in NEN.


Asunto(s)
Microbiota , Tumores Neuroendocrinos , Humanos , Hibridación Fluorescente in Situ , Tumores Neuroendocrinos/patología , Proyectos Piloto , Microambiente Tumoral
10.
Int J Mol Sci ; 21(15)2020 Jul 29.
Artículo en Inglés | MEDLINE | ID: mdl-32751239

RESUMEN

Colorectal cancer (CRC) is a multifaceted disease influenced by both environmental and genetic factors. A large body of literature has demonstrated the role of gut microbes in promoting inflammatory responses, creating a suitable microenvironment for the development of skewed interactions between the host and the gut microbiota and cancer initiation. Even if surgery is the primary therapeutic strategy, patients with advanced disease or cancer recurrence after surgery remain difficult to cure. Therefore, the gut microbiota has been proposed as a novel therapeutic target in light of recent promising data in which it seems to modulate the response to cancer immunotherapy. The use of microbe-targeted therapies, including antibiotics, prebiotics, live biotherapeutics, and fecal microbiota transplantation, is therefore considered to support current therapies in CRC management. In this review, we will discuss the importance of host-microbe interactions in CRC and how promoting homeostatic immune responses through microbe-targeted therapies may be useful in preventing/treating CRC development.


Asunto(s)
Neoplasias Colorrectales/terapia , Disbiosis/terapia , Trasplante de Microbiota Fecal , Microbioma Gastrointestinal/inmunología , Recurrencia Local de Neoplasia/terapia , Probióticos/uso terapéutico , Antibacterianos/uso terapéutico , Productos Biológicos/uso terapéutico , Neoplasias Colorrectales/inmunología , Neoplasias Colorrectales/microbiología , Neoplasias Colorrectales/patología , Disbiosis/inmunología , Disbiosis/microbiología , Disbiosis/patología , Interacciones Microbiota-Huesped/inmunología , Humanos , Recurrencia Local de Neoplasia/inmunología , Recurrencia Local de Neoplasia/microbiología , Recurrencia Local de Neoplasia/patología , Prebióticos/administración & dosificación , Microambiente Tumoral/efectos de los fármacos , Microambiente Tumoral/inmunología
11.
Cells ; 9(5)2020 05 16.
Artículo en Inglés | MEDLINE | ID: mdl-32429359

RESUMEN

Alterations of the gut microbiota may cause dysregulated mucosal immune responses leading to the onset of inflammatory bowel diseases (IBD) in genetically susceptible hosts. Restoring immune homeostasis through the normalization of the gut microbiota is now considered a valuable therapeutic approach to treat IBD patients. The customization of microbe-targeted therapies, including antibiotics, prebiotics, live biotherapeutics and faecal microbiota transplantation, is therefore considered to support current therapies in IBD management. In this review, we will discuss recent advancements in the understanding of host-microbe interactions in IBD and the basis to promote homeostatic immune responses through microbe-targeted therapies. By considering gut microbiota dysbiosis as a key feature for the establishment of chronic inflammatory events, in the near future it will be suitable to design new cost-effective, physiologic, and patient-oriented therapeutic strategies for the treatment of IBD that can be applied in a personalized manner.


Asunto(s)
Microbioma Gastrointestinal , Inmunidad Mucosa , Factores Inmunológicos/metabolismo , Inflamación/inmunología , Inflamación/microbiología , Intestinos/inmunología , Intestinos/microbiología , Animales , Disbiosis/complicaciones , Disbiosis/inmunología , Disbiosis/microbiología , Humanos
12.
Neurobiol Aging ; 40: 120-126, 2016 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-26973111

RESUMEN

The orexin system has been investigated in patients affected by mild cognitive impairment (MCI) due to Alzheimer's disease (AD) by measuring orexin-A concentrations in the cerebrospinal fluid (CSF), and correlated to subjective and objective sleep parameters, quantified by questionnaires and polysomnography, respectively. Twenty drug-naïve patients with MCI due to AD were studied and compared with a population of 26 age and/or sex matched controls, divided into subgroups on the basis of the Pittsburgh Sleep Quality Index (PSQI) score. Increased CSF-orexin levels were detected in patients with MCI due to AD in comparison with controls (p < 0.05). In particular, CSF-orexin concentrations were higher in MCI patients suffering from sleep complaints (PSQI ≥5, n = 10) compared with MCI patients with a regular sleep-wake cycle (PSQI <5, n = 10, p < 0.001) and compared with both control groups (with sleep complaints, PSQI ≥5, n = 11, p < 0.001; without sleep complaints, PSQI <5, n = 15, p < 0.001). Moreover, REM sleep was reduced in MCI patients compared with controls (p < 0.01), and had a negative correlation coupled with a reciprocal influence at the multiple regression analysis with CSF-orexin levels (R = -0.65; ß = -8.90). REM sleep disruption and sleep fragmentation are related to higher CSF-orexin levels in patients with MCI due to AD, thus suggesting that the orexin system may be involved even in the earliest stages of AD, resulting in prolonged sleep latency, reduced sleep efficiency, and REM sleep impairment.


Asunto(s)
Enfermedad de Alzheimer/complicaciones , Disfunción Cognitiva/etiología , Orexinas/líquido cefalorraquídeo , Privación de Sueño/etiología , Trastornos del Sueño-Vigilia/etiología , Sueño REM , Anciano , Enfermedad de Alzheimer/diagnóstico , Biomarcadores/líquido cefalorraquídeo , Disfunción Cognitiva/líquido cefalorraquídeo , Disfunción Cognitiva/diagnóstico , Femenino , Humanos , Masculino , Polisomnografía , Privación de Sueño/líquido cefalorraquídeo , Privación de Sueño/diagnóstico , Trastornos del Sueño-Vigilia/líquido cefalorraquídeo , Trastornos del Sueño-Vigilia/diagnóstico
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA