Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 10 de 10
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Cell Stem Cell ; 2024 May 13.
Artículo en Inglés | MEDLINE | ID: mdl-38754428

RESUMEN

Autophagy is central to the benefits of longevity signaling programs and to hematopoietic stem cell (HSC) response to nutrient stress. With age, a subset of HSCs increases autophagy flux and preserves regenerative capacity, but the signals triggering autophagy and maintaining the functionality of autophagy-activated old HSCs (oHSCs) remain unknown. Here, we demonstrate that autophagy is an adaptive cytoprotective response to chronic inflammation in the aging murine bone marrow (BM) niche. We find that inflammation impairs glucose uptake and suppresses glycolysis in oHSCs through Socs3-mediated inhibition of AKT/FoxO-dependent signaling, with inflammation-mediated autophagy engagement preserving functional quiescence by enabling metabolic adaptation to glycolytic impairment. Moreover, we show that transient autophagy induction via a short-term fasting/refeeding paradigm normalizes glycolytic flux and significantly boosts oHSC regenerative potential. Our results identify inflammation-driven glucose hypometabolism as a key driver of HSC dysfunction with age and establish autophagy as a targetable node to reset oHSC regenerative capacity.

2.
Cell Rep Med ; 4(8): 101147, 2023 08 15.
Artículo en Inglés | MEDLINE | ID: mdl-37552988

RESUMEN

Solid organ transplant remains a life-saving therapy for children with end-stage heart, lung, liver, or kidney disease; however, ∼33% of allograft recipients experience acute rejection within the first year after transplant. Our ability to detect early rejection is hampered by an incomplete understanding of the immune changes associated with allograft health, particularly in the pediatric population. We performed detailed, multilineage, single-cell analysis of the peripheral blood immune composition in pediatric solid organ transplant recipients, with high-dimensional mass cytometry. Supervised and unsupervised analysis methods to study cell-type proportions indicate that the allograft type strongly influences the post-transplant immune profile. Further, when organ-specific differences are considered, graft health is associated with changes in the proportion of distinct T cell subpopulations. Together, these data form the basis for mechanistic studies into the pathobiology of rejection and allow for the development of new immunosuppressive agents with greater specificity.


Asunto(s)
Enfermedades Renales , Trasplante de Riñón , Trasplante de Órganos , Humanos , Niño , Trasplante Homólogo , Inmunidad
3.
bioRxiv ; 2023 Aug 19.
Artículo en Inglés | MEDLINE | ID: mdl-37645930

RESUMEN

Aging of the hematopoietic system promotes various blood, immune and systemic disorders and is largely driven by hematopoietic stem cell (HSC) dysfunction ( 1 ). Autophagy is central for the benefits associated with activation of longevity signaling programs ( 2 ), and for HSC function and response to nutrient stress ( 3,4 ). With age, a subset of HSCs increases autophagy flux and preserves some regenerative capacity, while the rest fail to engage autophagy and become metabolically overactivated and dysfunctional ( 4 ). However, the signals that promote autophagy in old HSCs and the mechanisms responsible for the increased regenerative potential of autophagy-activated old HSCs remain unknown. Here, we demonstrate that autophagy activation is an adaptive survival response to chronic inflammation in the aging bone marrow (BM) niche ( 5 ). We find that inflammation impairs glucose metabolism and suppresses glycolysis in aged HSCs through Socs3-mediated impairment of AKT/FoxO-dependent signaling. In this context, we show that inflammation-mediated autophagy engagement preserves functional quiescence by enabling metabolic adaptation to glycolytic impairment. Moreover, we demonstrate that transient autophagy induction via a short-term fasting/refeeding paradigm normalizes glucose uptake and glycolytic flux and significantly improves old HSC regenerative potential. Our results identify inflammation-driven glucose hypometabolism as a key driver of HSC dysfunction with age and establish autophagy as a targetable node to reset old HSC glycolytic and regenerative capacity. One-Sentence Summary: Autophagy compensates for chronic inflammation-induced metabolic deregulation in old HSCs, and its transient modulation can reset old HSC glycolytic and regenerative capacity.

4.
Res Sq ; 2023 Jun 02.
Artículo en Inglés | MEDLINE | ID: mdl-37398389

RESUMEN

Microglia are implicated in aging, neurodegeneration, and Alzheimer's disease (AD). Traditional, low-plex, imaging methods fall short of capturing in situ cellular states and interactions in the human brain. We utilized Multiplexed Ion Beam Imaging (MIBI) and data-driven analysis to spatially map proteomic cellular states and niches in healthy human brain, identifying a spectrum of microglial profiles, called the microglial state continuum (MSC). The MSC ranged from senescent-like to active proteomic states that were skewed across large brain regions and compartmentalized locally according to their immediate microenvironment. While more active microglial states were proximal to amyloid plaques, globally, microglia significantly shifted towards a, presumably, dysfunctional low MSC in the AD hippocampus, as confirmed in an independent cohort (n=26). This provides an in situ single cell framework for mapping human microglial states along a continuous, shifting existence that is differentially enriched between healthy brain regions and disease, reinforcing differential microglial functions overall.

5.
Cancer Cell ; 41(4): 791-806.e4, 2023 04 10.
Artículo en Inglés | MEDLINE | ID: mdl-37037616

RESUMEN

Immune checkpoint inhibitors (ICIs), including CTLA-4- and PD-1-blocking antibodies, can have profound effects on tumor immune cell infiltration that have not been consistent in biopsy series reported to date. Here, we analyze seven molecular datasets of samples from patients with advanced melanoma (N = 514) treated with ICI agents to investigate clinical, genomic, and transcriptomic features of anti-PD-1 response in cutaneous melanoma. We find that prior anti-CTLA-4 therapy is associated with differences in genomic, individual gene, and gene signatures in anti-PD-1 responders. Anti-CTLA-4-experienced melanoma tumors that respond to PD-1 blockade exhibit increased tumor mutational burden, inflammatory signatures, and altered cell cycle processes compared with anti-CTLA-4-naive tumors or anti-CTLA-4-experienced, anti-PD-1-nonresponsive melanoma tumors. We report a harmonized, aggregate resource and suggest that prior CTLA-4 blockade therapy is associated with marked differences in the tumor microenvironment that impact the predictive features of PD-1 blockade therapy response.


Asunto(s)
Melanoma , Neoplasias Cutáneas , Humanos , Melanoma/tratamiento farmacológico , Melanoma/genética , Melanoma/metabolismo , Neoplasias Cutáneas/tratamiento farmacológico , Neoplasias Cutáneas/genética , Antígeno CTLA-4/genética , Biomarcadores de Tumor , Inmunoterapia , Microambiente Tumoral
6.
Patterns (N Y) ; 3(8): 100536, 2022 Aug 12.
Artículo en Inglés | MEDLINE | ID: mdl-36033591

RESUMEN

Single-cell technologies generate large, high-dimensional datasets encompassing a diversity of omics. Dimensionality reduction captures the structure and heterogeneity of the original dataset, creating low-dimensional visualizations that contribute to the human understanding of data. Existing algorithms are typically unsupervised, using measured features to generate manifolds, disregarding known biological labels such as cell type or experimental time point. We repurpose the classification algorithm, linear discriminant analysis (LDA), for supervised dimensionality reduction of single-cell data. LDA identifies linear combinations of predictors that optimally separate a priori classes, enabling the study of specific aspects of cellular heterogeneity. We implement feature selection by hybrid subset selection (HSS) and demonstrate that this computationally efficient approach generates non-stochastic, interpretable axes amenable to diverse biological processes such as differentiation over time and cell cycle. We benchmark HSS-LDA against several popular dimensionality-reduction algorithms and illustrate its utility and versatility for the exploration of single-cell mass cytometry, transcriptomics, and chromatin accessibility data.

7.
Patterns (N Y) ; 3(8): 100574, 2022 Aug 12.
Artículo en Inglés | MEDLINE | ID: mdl-36033601

RESUMEN

Glass, a post-doctoral researcher, and Amouzgar, a PhD student, in Bendall lab proposed a supervised dimensionality reduction method to explore and analyze single-cell data. Their Patterns paper highlights the advantages of supervised learning in single-cell datasets with class labels. They talk about the essential role of data science in this project and in their lives.

8.
Cell Rep ; 30(10): 3368-3382.e7, 2020 03 10.
Artículo en Inglés | MEDLINE | ID: mdl-32160543

RESUMEN

Tumors that overexpress the MYC oncogene are frequently aneuploid, a state associated with highly aggressive cancers and tumor evolution. However, how MYC causes aneuploidy is not well understood. Here, we show that MYC overexpression induces mitotic spindle assembly defects and chromosomal instability (CIN) through effects on microtubule nucleation and organization. Attenuating MYC expression reverses mitotic defects, even in established tumor cell lines, indicating an ongoing role for MYC in CIN. MYC reprograms mitotic gene expression, and we identify TPX2 to be permissive for spindle assembly in MYC-high cells. TPX2 depletion blocks mitotic progression, induces cell death, and prevents tumor growth. Further elevating TPX2 expression reduces mitotic defects in MYC-high cells. MYC and TPX2 expression may be useful biomarkers to stratify patients for anti-mitotic therapies. Our studies implicate MYC as a regulator of mitosis and suggest that blocking MYC activity can attenuate the emergence of CIN and tumor evolution.


Asunto(s)
Mitosis , Neoplasias/metabolismo , Neoplasias/patología , Proteínas Proto-Oncogénicas c-myc/metabolismo , Animales , Proteínas de Ciclo Celular/genética , Proteínas de Ciclo Celular/metabolismo , Muerte Celular , Línea Celular Tumoral , Inestabilidad Cromosómica , Citoprotección , Femenino , Regulación Neoplásica de la Expresión Génica , Humanos , Ratones , Proteínas Asociadas a Microtúbulos/genética , Proteínas Asociadas a Microtúbulos/metabolismo , Huso Acromático/metabolismo , Mutaciones Letales Sintéticas
9.
Curr Biol ; 29(4): 700-708.e5, 2019 02 18.
Artículo en Inglés | MEDLINE | ID: mdl-30744975

RESUMEN

Each time a cell divides, the microtubule cytoskeleton self-organizes into the metaphase spindle: an ellipsoidal steady-state structure that holds its stereotyped geometry despite microtubule turnover and internal stresses [1-6]. Regulation of microtubule dynamics, motor proteins, microtubule crosslinking, and chromatid cohesion can modulate spindle size and shape, and yet modulated spindles reach and hold a new steady state [7-11]. Here, we ask what maintains any spindle steady-state geometry. We report that clustering of microtubule ends by dynein and NuMA is essential for mammalian spindles to hold a steady-state shape. After dynein or NuMA deletion, the mitotic microtubule network is "turbulent"; microtubule bundles extend and bend against the cell cortex, constantly remodeling network shape. We find that spindle turbulence is driven by the homotetrameric kinesin-5 Eg5, and that acute Eg5 inhibition in turbulent spindles recovers spindle geometry and stability. Inspired by in vitro work on active turbulent gels of microtubules and kinesin [12, 13], we explore the kinematics of this in vivo turbulent network. We find that turbulent spindles display decreased nematic order and that motile asters distort the nematic director field. Finally, we see that turbulent spindles can drive both flow of cytoplasmic organelles and whole-cell movement-analogous to the autonomous motility displayed by droplet-encapsulated turbulent gels [12]. Thus, end-clustering by dynein and NuMA is required for mammalian spindles to reach a steady-state geometry, and in their absence Eg5 powers a turbulent microtubule network inside mitotic cells.


Asunto(s)
Proteínas de Ciclo Celular/metabolismo , Dineínas/metabolismo , Microtúbulos/metabolismo , Huso Acromático/metabolismo , Línea Celular , Humanos
10.
Am J Pathol ; 187(9): 1984-1997, 2017 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-28683257

RESUMEN

Chylous pleural effusion (chylothorax) frequently accompanies lymphatic vessel malformations and other conditions with lymphatic defects. Although retrograde flow of chyle from the thoracic duct is considered a potential mechanism underlying chylothorax in patients and mouse models, the path chyle takes to reach the thoracic cavity is unclear. Herein, we use a novel transgenic mouse model, where doxycycline-induced overexpression of vascular endothelial growth factor (VEGF)-C was driven by the adipocyte-specific promoter adiponectin (ADN), to determine how chylothorax forms. Surprisingly, 100% of adult ADN-VEGF-C mice developed chylothorax within 7 days. Rapid, consistent appearance of chylothorax enabled us to examine the step-by-step development in otherwise normal adult mice. Dynamic imaging with a fluorescent tracer revealed that lymph in the thoracic duct of these mice could enter the thoracic cavity by retrograde flow into enlarged paravertebral lymphatics and subpleural lymphatic plexuses that had incompetent lymphatic valves. Pleural mesothelium overlying the lymphatic plexuses underwent exfoliation that increased during doxycycline exposure. Together, the findings indicate that chylothorax in ADN-VEGF-C mice results from retrograde flow of chyle from the thoracic duct into lymphatic tributaries with defective valves. Chyle extravasates from these plexuses and enters the thoracic cavity through exfoliated regions of the pleural mesothelium.


Asunto(s)
Quilotórax/genética , Sistema Linfático/anomalías , Factor C de Crecimiento Endotelial Vascular/genética , Animales , Quilotórax/patología , Vasos Linfáticos/anomalías , Ratones , Ratones Transgénicos
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...