Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Anal Chim Acta ; 1283: 341961, 2023 Dec 01.
Artículo en Inglés | MEDLINE | ID: mdl-37977785

RESUMEN

Temperature-responsive liquid chromatography (TRLC) offers an alternative for retention and selectivity optimisation in HPLC. This approach thereby exploits temperature gradients on stimuli-responsive stationary phases and forfeits the necessity for solvent gradients, allowing analyses to be performed using aqueous mobile phases. Consequently, it can be employed as a green alternative to reversed-phase separations. However, current production to obtain temperature-responsive columns inherently require dedicated column packing processes with polymer-modified particles. To facilitate the development of temperature-responsive phases, a flow-through modification procedure was developed allowing on-column modification of aminopropyl silica columns. Three columns were manufactured using this novel flow-through approach, which achieved identical column efficiencies compared to existing TRLC column. Demonstrating the possibility of bypassing the dedicated packing processes without losing efficiency. Additionally, it was observed that flow-through produced columns yielded higher retention at elevated temperatures despite their reduced carbon load. Further investigation of the carbon load revealed the presence of stationary phase gradients, whose influence was studied via novel developed retention experiments, which revealed a negligible change reduction in retention upon a change of polymer modification from 19.8% to 14.5%. However, further decrease from 14.5% to 12.3% resulted in a larger change. Interestingly, a further enhancement in apparent plate numbers was observed when operating the column under a reversed flow, yielding an increasing stationary phase gradient. This on-column modification procedure demonstrates the potential for modification of existing (commercial) packed columns to achieve temperature-responsive phases without loss of efficiency or retention. Thus, not only facilitating accessibility to temperature-responsive phases, but also aiding with development of further generations of temperature-responsive phases by removing the need for packing optimisation. Additionally, a novel experiment was set up to easily investigate the effect of inhomogeneous stationary phases retention.

2.
Anal Chem ; 95(23): 8763-8769, 2023 Jun 13.
Artículo en Inglés | MEDLINE | ID: mdl-37262425

RESUMEN

Chiral resolution of solutes occurring in mixtures of unrelated species is of relevance in life sciences and in pharmaceutical analysis. While this is conceptually achievable by comprehensive two-dimensional liquid chromatography (LC × LC), few approaches exist whereby the second dimension comprises the chiral separation. The latter is preferable in combination with a conventional reversed phase type of separation in the first dimension as it offers an extension of a conventional achiral analysis. The implementation of such rapid chiral analyses in the second dimension was, thus far, limited by the challenging transfer of the first dimension mobile phase to the second dimension while still achieving chiral separation. In this study, the combination of temperature-responsive and reversed-phase chiral liquid chromatography is assessed in terms of enantioselective separation of a broad range of pharmaceutical compounds. Applying temperature-responsive liquid chromatography (TRLC) in the first dimension allows for analyses to be performed under purely aqueous conditions, which then allows for complete and more generic refocusing of (organic) solutes prior to the second dimension. This offers an enhanced ability to employ fast and broad compositional gradients over the chiral dimension, which broadens the applicability of the technique. In the proposed platform, seven chiral columns (superficially porous and fully porous columns (comprising both polysaccharide and macrocyclic antibiotic phases)) and four mobile phase gradients were screened on a pharmaceutical test mixture. The platform was shown to be able to offer the necessary resolving power for the molecules at hand and offers a new approach for chiral screening of mixtures of unrelated compounds.

3.
Anal Chim Acta ; 1231: 340441, 2022 Oct 23.
Artículo en Inglés | MEDLINE | ID: mdl-36220293

RESUMEN

Refractive index detection (RID) is attractive because it allows approaching the benefits of universal detection with liquid chromatography, by which ideally standard independent calibration and hence compound independent quantification becomes possible. Nevertheless, the implementation of RID has remained limited as it offers poor detection sensitivity while only being compatible with isocratic mobile phases. The implementation of compositional solvent gradients has remained prohibitively challenging in commercial HPLC-RID systems due to the resulting drastic alterations in refractive index and extreme baseline drift. While the refractive index is also highly dependent on temperature, more leeway appears possible to mitigate the problem, particularly when the used temperature gradients can be limited. Temperature-responsive liquid chromatography (TRLC) allows obtaining isocratic reversed phase type of separations, whereby retention is modulated via temperature changes âˆ¼ 15 °C-20 °C above and below the polymer conversion temperature. Elution profiles, reminiscent of what can be obtained with solvent gradients in conventional RPLC, can then be obtained by enacting downwards temperature gradients on the columns. This work comprises a proof-of-principle to illustrate the possibilities of combining thermal gradient TRLC with RID. The observed baseline drift appeared thereby very minor (<5 nRIU min-1), and hence easily controllable. Short chain fatty acids are used as representative compounds to assess this new approach. Overlapping calibration lines are accordingly obtained for all fatty acids between butyric and decanoic acid.


Asunto(s)
Polímeros , Refractometría , Cromatografía Líquida de Alta Presión/métodos , Cromatografía Liquida/métodos , Ácidos Decanoicos , Ácidos Grasos , Refractometría/métodos , Solventes/química , Temperatura
4.
Analyst ; 146(22): 6990-6996, 2021 Nov 08.
Artículo en Inglés | MEDLINE | ID: mdl-34668892

RESUMEN

Temperature-responsive liquid chromatography (TRLC) allows for extensive retention and selectivity tuning through temperature in HPLC. This is mainly achieved through the use of a stationary phases comprising of a temperature-responsive polymer which undergoes a reversible change from hydrophilic to hydrophobic behaviour upon increasing the temperature. The approach can allow for reversed phase type separations to be achieved with purely aqueous mobile phases, whereby the retention is controlled through temperature instead of mobile phase composition. Despite the promising nature of such form of retention control under isocratic mobile phase conditions, TRLC can suffer from excessive retention of highly apolar solutes even at lower column temperatures whereby the polymer is considered hydrophilic. This is related both to a residual apolarity of the polymer chain and due to the high log P's and low water solubility of higly apolar compounds. While it was known that elution in TRLC doesn't necessarily has to be performed under purely aqueous conditions and that the use of organic co-solvents to the water is possible, the impact thereof on the temperature responsive behaviour itself had not yet been investigated in a systematic way. Therefore in this work the advantages and drawbacks of the use of the organic co-solvents methanol and acetonitrile in TRLC is assessed on two types of temperature reponsive phases: poly-N-N-propylacrylamide (PNNPAAm) and poly-N-isopropylacrylamide (PNIPAAm). The influence of organic co-solvents is investigated with two representative test mixtures (comprising 4 parabens and 5 apolar steroids).


Asunto(s)
Solventes , Cromatografía Líquida de Alta Presión , Cromatografía Liquida , Interacciones Hidrofóbicas e Hidrofílicas , Temperatura
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA