Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 34
Filtrar
1.
Int Immunopharmacol ; 133: 112166, 2024 May 30.
Artículo en Inglés | MEDLINE | ID: mdl-38678673

RESUMEN

Dendritic cells (DCs) are specialized antigen-presenting cells that play an important role in inducing and maintaining immune tolerance. The altered distribution and/or function of DCs contributes to defective tolerance in autoimmune diseases such as type 1 diabetes (T1D). In human T1D and in NOD mouse models, DCs share some defects and are often described as less tolerogenic and excessively immunogenic. In the NOD mouse model, the autoimmune response is associated with a defect in the Stat5b signaling pathway. We have reported that expressing a constitutively active form of Stat5b in DCs of transgenic NOD mice (NOD.Stat5b-CA), re-established their tolerogenic function, restored autoimmune tolerance and conferred protection from diabetes. However, the role and molecular mechanisms of Stat5b signaling in regulating splenic conventional DCs tolerogenic signature remained unclear. In this study, we reported that, compared to immunogenic splenic DCs of NOD, splenic DCs of NOD.Stat5b-CA mice exhibited a tolerogenic profile marked by elevated PD-L1 and PD-L2 expression, reduced pro-inflammatory cytokine production, increased frequency of the cDC2 subset and decreased frequency of the cDC1 subset. This tolerogenic profile was associated with increased Ezh2 and IRF4 but decreased IRF8 expression. We also found an upregulation of PD-L1 in the cDC1 subset and high PD-L1 and PD-L2 expression in cDC2 of NOD.Stat5b-CA mice. Mechanistically, we demonstrated that Ezh2 plays an important role in the maintenance of high PD-L1 expression in cDC1 and cDC2 subsets and that Ezh2 inhibition resulted in PD-L1 but not PD-L2 downregulation which was more drastic in the cDC2 subset. Additionally, Ezh2 inhibition severely reduced the cDC2 subset and increased the cDC1 subset and Stat5b-CA.DC pro-inflammatory cytokine production. Together our data suggest that the Stat5b-Ezh2 axis is critical for the maintenance of tolerogenic high PD-L1-expressing cDC2 and autoimmune tolerance in NOD.Stat5b-CA mice.


Asunto(s)
Antígeno B7-H1 , Células Dendríticas , Diabetes Mellitus Tipo 1 , Proteína Potenciadora del Homólogo Zeste 2 , Tolerancia Inmunológica , Ratones Endogámicos NOD , Factor de Transcripción STAT5 , Animales , Células Dendríticas/inmunología , Antígeno B7-H1/metabolismo , Antígeno B7-H1/genética , Factor de Transcripción STAT5/metabolismo , Factor de Transcripción STAT5/genética , Proteína Potenciadora del Homólogo Zeste 2/metabolismo , Proteína Potenciadora del Homólogo Zeste 2/genética , Diabetes Mellitus Tipo 1/inmunología , Ratones , Humanos , Transducción de Señal , Femenino , Ratones Transgénicos , Citocinas/metabolismo , Células Cultivadas
2.
J Pharm Biomed Anal ; 227: 115278, 2023 Apr 01.
Artículo en Inglés | MEDLINE | ID: mdl-36739720

RESUMEN

Essential oils (EOs) are natural products formed by plant volatile compounds. EOs are frequently used in the cosmetic and food industries as well as for domestic purposes, because of their physiochemical, biological and sensory properties. The functional groups (FG), corresponding to various chemical structures present in EOs, are responsible for their biological activities. Therefore, simple, rapid, and economical techniques suitable to characterize the EOs features by measuring their contents, are of great interest. Near-infrared spectroscopy (NIRS) highlights because of its rapidity, and being no-contaminant, as a potential solution. Multivariate correlation methods are commonly used to build NIRS calibrations. These methods were designed for the real space, that is for values comprised between - ∞ and + ∞. However, EOs components are co-dependent data restricted to a simplex space. These are the so-called compositional data (CoDa), needing specific methods to be correlated with a set of spectral explicative variables. In this study, compositional visible and near-infrared (VISNIRS) models have been assessed to quantify the FG of the analyzed EOs. For this purpose, the FG were organized according to their greater frequency in 1) alcohol; 2) ether; 3) ester; 4) aldehydes; 5) ketones, and the hydrocarbon fraction representing the remainder EOs mass, to characterize them. The approach of this study, based on compositional models from VISNIRS spectra, has provided a satisfactory predictive performance for the quantitative estimation of the main FG of the EOs. The proposed approach can be an alternative to traditional chemical methods to characterize EOs.


Asunto(s)
Aceites Volátiles , Aceites Volátiles/química , Espectroscopía Infrarroja Corta , Plantas
3.
Transl Res ; 255: 37-49, 2023 05.
Artículo en Inglés | MEDLINE | ID: mdl-36400308

RESUMEN

Dendritic cells (DCs) are key regulators of the adaptive immune response. Tolerogenic dendritic cells play a crucial role in inducing and maintaining immune tolerance in autoimmune diseases such as type 1 diabetes in humans as well as in the NOD mouse model. We previously reported that bone marrow-derived DCs (BM.DCs) from NOD mice, generated with a low dose of GM-CSF (GM/DCs), induce Treg differentiation and are able to protect NOD mice from diabetes. We had also found that the p38 MAPK/C/EBPß axis is involved in regulating the phenotype, as well as the production of IL-10 and IL-12p70, by tolerogenic GM/DCs. Here, we report that the inhibition of the PI3K signaling switched the cytokine profile of GM/DCs toward Th17-promoting cytokines without affecting their phenotype. PI3K inhibition abrogated the production of IL-10 by GM/DCs, whereas it enhanced their production of IL-23 and TGFß. Inhibition of PI3K signaling in tolerogenic GM/DCs also induced naive CD4+ T cells differentiation toward Th17 cells. Mechanistically, PI3K inhibition increased the DNA-binding activity of C/EBPß through a GSK3-dependent pathway, which is important to maintain the semimature phenotype of tolerogenic GM/DCs. Furthermore, analysis of C/EBPß-/- GM/DCs demonstrated that C/EBPß is required for IL-23 production. Of physiological relevance, the level of protection from diabetes following transfusion of GM/DCs into young NOD mice was significantly reduced when NOD mice were transfused with GM/DCs pretreated with a PI3K inhibitor. Our data suggest that PI3K/C/EBPß signaling is important in controlling tolerogenic function of GM/DCs by limiting their Th17-promoting cytokines.


Asunto(s)
Diabetes Mellitus , Interleucina-10 , Humanos , Ratones , Animales , Ratones Endogámicos NOD , Fosfatidilinositol 3-Quinasas/metabolismo , Células Th17/metabolismo , Médula Ósea , Glucógeno Sintasa Quinasa 3/metabolismo , Linfocitos T Reguladores , Diferenciación Celular , Citocinas/metabolismo , Tolerancia Inmunológica , Células Dendríticas/metabolismo , Interleucina-23/metabolismo , Diabetes Mellitus/metabolismo
4.
Int J Mol Sci ; 23(9)2022 Apr 28.
Artículo en Inglés | MEDLINE | ID: mdl-35563276

RESUMEN

Type 1 diabetes (T1D) results from the destruction of pancreatic beta cells through a process that is primarily mediated by T cells. Emerging evidence suggests that dendritic cells (DCs) play a crucial role in initiating and developing this debilitating disease. DCs are professional antigen-presenting cells with the ability to integrate signals arising from tissue infection or injury that present processed antigens from these sites to naïve T cells in secondary lymphoid organs, thereby triggering naïve T cells to differentiate and modulate adaptive immune responses. Recent advancements in our knowledge of the various subsets of DCs and their cellular structures and methods of orchestration over time have resulted in a better understanding of how the T cell response is shaped. DCs employ various arsenal to maintain their tolerance, including the induction of effector T cell deletion or unresponsiveness and the generation and expansion of regulatory T cell populations. Therapies that suppress the immunogenic effects of dendritic cells by blocking T cell costimulatory pathways and proinflammatory cytokine production are currently being sought. Moreover, new strategies are being developed that can regulate DC differentiation and development and harness the tolerogenic capacity of these cells. Here, in this report, we focus on recent advances in the field of DC immunology and evaluate the prospects of DC-based therapeutic strategies to treat T1D.


Asunto(s)
Diabetes Mellitus Tipo 1 , Células Dendríticas , Diabetes Mellitus Tipo 1/metabolismo , Diabetes Mellitus Tipo 1/terapia , Humanos , Tolerancia Inmunológica , Inmunoterapia , Linfocitos T Reguladores
5.
J Complement Integr Med ; 19(2): 467-470, 2022 Jun 01.
Artículo en Inglés | MEDLINE | ID: mdl-34332514

RESUMEN

OBJECTIVES: A mixture of Z and E communic acid is isolated for the first time from the cones of Juniperus phoenicea. Its biological activity was studied. METHODS: The plant material was extracted in a Soxhlet apparatus with n-hexane, the resulting extract was subjected to column chromatography (CC) on silica gel. The structure elucidation of the constituents of the isolated fraction was identified by comparison of its spectroscopic properties 1H and 13C NMR data with those reported in the literature. The antimicrobial assay of hexanic extract and isolated compounds was carried out by the disc diffusion and micro-dilution methods. RESULTS: A mixture of two diterpene acids isomers was isolated, with a high yield (68%). Their chemical structures were confirmed after comparing their spectral data with published reports. These natural products exhibited a significant antibacterial and antifungal activity against the tested strains. Indeed, for Bacillus cereus, Staphylococcus aureus, and Pseudomonas aeruginosa, the inhibition zone diameters (36-37 mm) was better than penicillin, novobiocin, and amoxicillin. For Candida albicans activity, it show that the mixture possess an activity similar to that of Metrazol. Against Escherichia coli, the inhibitory activity was found less than Amoxicillin. This is the first report of isolation of communic acid from J. phoenicea. CONCLUSIONS: These results showed that the cones of J. phoenicea were an important source of communic acid, and its hexanic extract had the greatest potential antibacterial activity against both Gram-negative and Gram-positive bacteria and C. albicans.


Asunto(s)
Diterpenos , Juniperus , Amoxicilina , Antibacterianos/química , Antibacterianos/farmacología , Candida albicans , Juniperus/química , Pruebas de Sensibilidad Microbiana , Extractos Vegetales/química , Extractos Vegetales/farmacología
6.
Front Neurosci ; 15: 700253, 2021.
Artículo en Inglés | MEDLINE | ID: mdl-34594182

RESUMEN

Mouse behavior is a primary outcome in evaluations of therapeutic efficacy. Exhaustive, continuous, multiparametric behavioral phenotyping is a valuable tool for understanding the pathophysiological status of mouse brain diseases. Automated home cage behavior analysis produces highly granulated data both in terms of number of features and sampling frequency. Previously, we demonstrated several ways to reduce feature dimensionality. In this study, we propose novel approaches for analyzing 33-Hz data generated by CleverSys software. We hypothesized that behavioral patterns within short time windows are reflective of physiological state, and that computer modeling of mouse behavioral routines can serve as a predictive tool in classification tasks. To remove bias due to researcher decisions, our data flow is indifferent to the quality, value, and importance of any given feature in isolation. To classify day and night behavior, as an example application, we developed a data preprocessing flow and utilized logistic regression (LG), support vector machines (SVM), random forest (RF), and one-dimensional convolutional neural networks paired with long short-term memory deep neural networks (1DConvBiLSTM). We determined that a 5-min video clip is sufficient to classify mouse behavior with high accuracy. LG, SVM, and RF performed similarly, predicting mouse behavior with 85% accuracy, and combining the three algorithms in an ensemble procedure increased accuracy to 90%. The best performance was achieved by combining the 1DConv and BiLSTM algorithms yielding 96% accuracy. Our findings demonstrate that computer modeling of the home-cage ethome can clearly define mouse physiological state. Furthermore, we showed that continuous behavioral data can be analyzed using approaches similar to natural language processing. These data provide proof of concept for future research in diagnostics of complex pathophysiological changes that are accompanied by changes in behavioral profile.

7.
Int J Mol Sci ; 21(18)2020 Sep 04.
Artículo en Inglés | MEDLINE | ID: mdl-32899608

RESUMEN

Tolerogenic dendritic cells (toDCs) are crucial to controlling the development of autoreactive T cell responses and the prevention of autoimmunity. We have reported that NOD.CD11cStat5b-CA transgenic mice expressing a constitutively active (CA) form of Stat5b under the control of a CD11c promoter are protected from diabetes and that Stat5b-CA-expressing DCs are tolerogenic and halt ongoing diabetes in NOD mice. However, the molecular mechanisms by which Stat5b-CA modulates DC tolerogenic function are not fully understood. Here, we used bone marrow-derived DCs (BMDCs) from NOD.CD11cStat5b-CA transgenic mice (Stat5b-CA.BMDCs) and found that Stat5b-CA.BMDCs displayed high levels of MHC class II, CD80, CD86, PD-L1, and PD-L2 and produced elevated amounts of TGFß but low amounts of TNFα and IL-23. Stat5b-CA.BMDCs upregulated Irf4 and downregulated Irf8 genes and protein expression and promoted CD11c+CD11b+ DC2 subset differentiation. Interestingly, we found that the histone methyltransferase Ezh2 and Stat5b-CA bound gamma-interferon activated site (GAS) sequences in the Irf8 enhancer IRF8 transcription, whereas Stat5b but not Ezh2 bound GAS sequences in the Irf4 promoter to enhance IRF4 transcription. Injection of Stat5b-CA.BMDCs into prediabetic NOD mice halted progression of islet inflammation and protected against diabetes. Importantly, inhibition of Ezh2 in tolerogenic Stat5b-CA.BMDCs reduced their ability to prevent diabetes development in NOD recipient mice. Taken together, our data suggest that the active form of Stat5b induces tolerogenic DC function by modulating IRF4 and IRF8 expression through recruitment of Ezh2 and highlight the fundamental role of Ezh2 in Stat5b-mediated induction of tolerogenic DC function.


Asunto(s)
Proteína Potenciadora del Homólogo Zeste 2/metabolismo , Factores Reguladores del Interferón/metabolismo , Factor de Transcripción STAT5/metabolismo , Traslado Adoptivo , Animales , Autoinmunidad/inmunología , Médula Ósea/efectos de los fármacos , Antígeno CD11c/metabolismo , Diferenciación Celular/efectos de los fármacos , Células Dendríticas/metabolismo , Diabetes Mellitus Tipo 1/metabolismo , Proteína Potenciadora del Homólogo Zeste 2/fisiología , Factor Estimulante de Colonias de Granulocitos y Macrófagos/metabolismo , Humanos , Tolerancia Inmunológica/genética , Tolerancia Inmunológica/inmunología , Masculino , Células Madre Mesenquimatosas/metabolismo , Ratones , Ratones Endogámicos NOD , Ratones Transgénicos , Factor de Transcripción STAT5/fisiología , Linfocitos T Reguladores/inmunología
8.
J Complement Integr Med ; 17(3)2020 Sep 23.
Artículo en Inglés | MEDLINE | ID: mdl-32549178

RESUMEN

Background Ethanolic, aqueous and lipidic extracts of Spirulina platensis were evaluated for their bioactive substances (polyphenols and fatty acids) and antioxidant activities using two different assays diphenyl-1-picrylhydrazyl (DPPH) and azino-bis (ethylbenzthiazoline-6- sulfonicacid (ABTS)). Methods The phenolic compounds amounts were determined by colorimetric assays and were analyzed by high-performance and liquid chromatography (HPLC) method. The identification of phenolic compounds in the extract was accomplished by comparison of their retention times with those of pure standards. The chemical composition of fatty acids in lipidic extract was determined by GC/FIDs and GC/MS method. Results The obtained results revealed that using DPPH, the ethanolic extract recorded the highest activity with (IC50=449 µg/mL ± 83). It was characterized with a high levels of phenolic and flavonoid content 0.33 ± 0.01 mg GAE/g dw and 0.21 ± 0.01 mg quercetin/g dw, respectively. The ethanolic extract showed the presence of caffeic acid, syringic acid, ferulic acid, p-coumaric acid, chlorogenic acid, kaempferol, quercetin and apigenin. Those entire phenolic compounds seem participle synergistically to the pronounced higher activity. To the best of our knowledge, the apigenin (4', 5, 7,-trihydroxyflavone), a natural compound which is famously known by its potent antiradical activity, was identified for the first time in Moroccan S. platensis only in the ethanolic extract. A high positive correlation (r=0.895) between the antioxidant activity and the chemical composition of ethanolic extract was observed. For ABTS, lipidic extract showed the highest activity with (IC50=740 µg/mL ± 12). A total of 15 fatty acids compounds, amounting 89.73% of the extract were identified. γ-linolenic acid (GLA) (39.02%) and α-linolenic acid (ALA) (13.85%) were the major component and contribute greatly to the antioxidant activity observed. The lipidic extract has a high content of unsaturated fatty acids (70.95%) which are often exhibited very high antioxidant activity since they have two or more double bonds and chain lengths. The aqueous extract either with DPPH or ABTS methods, recorded low antioxidant activity. Its correlation was r=0.499, lower than found in the ethanolic extract. Conclusions These results showed that Spirulina platensis could be considered as a valuable source of fatty acids and phenolics with potent antioxidant activity. It may be employed in the manufacture of pharmaceutical drugs as an alternative source of natural antioxidants.


Asunto(s)
Antioxidantes/análisis , Etanol/análisis , Ácidos Grasos/análisis , Microalgas/química , Extractos Vegetales/análisis , Polifenoles/análisis , Spirulina/química , Marruecos
9.
PLoS Biol ; 17(9): e3000451, 2019 09.
Artículo en Inglés | MEDLINE | ID: mdl-31525189

RESUMEN

Nucleotide-binding, leucine-rich repeat containing X1 (NLRX1) is a mitochondria-located innate immune sensor that inhibits major pro-inflammatory pathways such as type I interferon and nuclear factor-κB signaling. We generated a novel, spontaneous, and rapidly progressing mouse model of multiple sclerosis (MS) by crossing myelin-specific T-cell receptor (TCR) transgenic mice with Nlrx1-/- mice. About half of the resulting progeny developed spontaneous experimental autoimmune encephalomyelitis (spEAE), which was associated with severe demyelination and inflammation in the central nervous system (CNS). Using lymphocyte-deficient mice and a series of adoptive transfer experiments, we demonstrate that genetic susceptibility to EAE lies within the innate immune compartment. We show that NLRX1 inhibits the subclinical stages of microglial activation and prevents the generation of neurotoxic astrocytes that induce neuronal and oligodendrocyte death in vitro. Moreover, we discovered several mutations within NLRX1 that run in MS-affected families. In summary, our findings highlight the importance of NLRX1 in controlling the early stages of CNS inflammation and preventing the onset of spontaneous autoimmunity.


Asunto(s)
Encefalomielitis Autoinmune Experimental/etiología , Proteínas Mitocondriales/genética , Proteínas Mitocondriales/fisiología , Adulto , Animales , Astrocitos/fisiología , Estudios de Casos y Controles , Sistema Nervioso Central/patología , Codón sin Sentido , Enfermedades Desmielinizantes , Encefalomielitis Autoinmune Experimental/patología , Femenino , Humanos , Inmunidad Innata , Masculino , Ratones Transgénicos , Persona de Mediana Edad , Mutación Missense , Adulto Joven
10.
Cells ; 8(5)2019 04 30.
Artículo en Inglés | MEDLINE | ID: mdl-31052241

RESUMEN

Uptake of glutamate from the extracellular space and glutamate release to neurons are two major processes conducted by astrocytes in the central nervous system (CNS) that protect against glutamate excitotoxicity and strengthen neuronal firing, respectively. During inflammatory conditions in the CNS, astrocytes may lose one or both of these functions, resulting in accumulation of the extracellular glutamate, which eventually leads to excitotoxic neuronal death, which in turn worsens the CNS inflammation. NLRX1 is an innate immune NOD-like receptor that inhibits the major inflammatory pathways. It is localized in the mitochondria and was shown to inhibit cell death, enhance ATP production, and dampen oxidative stress. In the current work, using primary murine astrocyte cultures from WT and Nlrx1-/- mice, we demonstrate that NLRX1 potentiates astrocytic glutamate uptake by enhancing mitochondrial functions and the functional activity of glutamate transporters. Also, we report that NLRX1 inhibits glutamate release from astrocytes by repressing Ca2+-mediated glutamate exocytosis. Our study, for the first time, identified NLRX1 as a potential regulator of glutamate homeostasis in the CNS.


Asunto(s)
Astrocitos/metabolismo , Ácido Glutámico/metabolismo , Mitocondrias/metabolismo , Proteínas Mitocondriales/fisiología , Animales , Astrocitos/citología , Transporte Biológico , Células Cultivadas , Sistema Nervioso Central/metabolismo , Proteínas de Transporte de Glutamato en la Membrana Plasmática/fisiología , Homeostasis , Ratones , Ratones Endogámicos C57BL , Ratones Endogámicos NOD
11.
Cells ; 7(9)2018 Aug 27.
Artículo en Inglés | MEDLINE | ID: mdl-30150571

RESUMEN

Although the etiology of multiple sclerosis (MS) remains enigmatic, the role of T cells is unquestionably central in this pathology. Immune cells respond to pathogens and danger signals via pattern-recognition receptors (PRR). Several reports implicate Nlrp12, an intracellular PRR, in the development of a mouse MS-like disease, called Experimental Autoimmune Encephalomyelitis (EAE). In this study, we used induced and spontaneous models of EAE, as well as in vitro T cell assays, to test the hypothesis that Nlrp12 inhibits Th1 response and prevents T-cell mediated autoimmunity. We found that Nlrp12 plays a protective role in induced EAE by reducing IFNγ/IL-4 ratio in lymph nodes, whereas it potentiates the development of spontaneous EAE (spEAE) in 2D2 T cell receptor (TCR) transgenic mice. Looking into the mechanism of Nlrp12 activity in T cell response, we found that it inhibits T cell proliferation and suppresses Th1 response by reducing IFNγ and IL-2 production. Following TCR activation, Nlrp12 inhibits Akt and NF-κB phosphorylation, while it has no effect on S6 phosphorylation in the mTOR pathway. In conclusion, we propose a model that can explain the dual immunoregulatory function of Nlrp12 in EAE. We also propose a model explaining the molecular mechanism of Nlrp12-dependent regulation of T cell response.

12.
J Autoimmun ; 76: 63-74, 2017 01.
Artículo en Inglés | MEDLINE | ID: mdl-27634616

RESUMEN

Defects in dendritic cells (DCs) development and function lead to autoimmune disorders. Autoimmune diabetes in humans and NOD mice results from a breakdown of self-tolerance, ending in T cell-mediated ß-cell destruction. DCs dysfunction in NOD mice results in part from a defect in the JAK-STAT5 signaling pathway associated with the idd4 susceptibility locus. The involvement of Stat5b in DCs tolerogenic functions remains unknown. We have generated transgenic mice (NOD.CD11cStat5b-CA) expressing a constitutively active form of the Stat5b gene (Stat5b-CA) under control of CD11c promoter. All NOD.CD11cStat5b-CA mice were protected against diabetes. Protection was associated with an increased in the pool and suppressive function of Tregs, a promotion of Th2 and Tc2 immune response and a decreased percentage of CD8+ T cells. Splenic DCs of NOD.CD11cStat5b-CA mice acquired a mature phenotype, promoted and induced better conversion of CD4+CD25-Foxp3- T cells into Tregs (CD4+CD25+Foxp3+ T cells) than DCs of NOD mice. Stat5b-CA.DC-educated CD4+CD25- T cells delayed diabetes onset whereas Stat5b-CA.DC-educated Tregs blocked ongoing diabetes in 8-10 weeks old NOD recipient mice. Importantly, injection of Stat5b.CA.DC to 8-10-week old NOD mice halted diabetes progression and educated their splenocytes to loose their diabetogenic potential when transferred to NOD.SCID mice. Our work is the first to report that an active form of Stat5b restored DCs tolerogenic functions that re-educated Tregs to re-establish and to sustain long-term protective immune response against diabetes in NOD mice.


Asunto(s)
Células Dendríticas/inmunología , Diabetes Mellitus Tipo 1/inmunología , Diabetes Mellitus Tipo 1/metabolismo , Factor de Transcripción STAT5/metabolismo , Autotolerancia/inmunología , Transducción de Señal , Animales , Autoantígenos/inmunología , Autoinmunidad , Biomarcadores , Citocinas/genética , Citocinas/metabolismo , Células Dendríticas/metabolismo , Diabetes Mellitus Tipo 1/patología , Modelos Animales de Enfermedad , Progresión de la Enfermedad , Inmunofenotipificación , Ratones , Ratones Endogámicos NOD , Ratones Transgénicos , Fenotipo , Subgrupos de Linfocitos T/inmunología , Subgrupos de Linfocitos T/metabolismo
13.
Front Immunol ; 8: 2012, 2017.
Artículo en Inglés | MEDLINE | ID: mdl-29403486

RESUMEN

Multiple sclerosis (MS) is an autoimmune disease of the central nervous system (CNS) associated with inappropriate activation of lymphocytes, hyperinflammatory responses, demyelination, and neuronal damage. In the past decade, a number of biological immunomodulators have been developed that suppress the peripheral immune responses and slow down the progression of the disease. However, once the inflammation of the CNS has commenced, it can cause serious permanent neuronal damage. Therefore, there is a need for developing novel therapeutic approaches that control and regulate inflammatory responses within the CNS. Nucleotide-binding oligomerization domain (NOD)-like receptors (NLRs) are intracellular regulators of inflammation expressed by many cell types within the CNS. They redirect multiple signaling pathways initiated by pathogens and molecules released by injured tissues. NLR family members include positive regulators of inflammation, such as NLRP3 and NLRC4 and anti-inflammatory NLRs, such as NLRX1 and NLRP12. They exert immunomodulatory effect at the level of peripheral immune responses, including antigen recognition and lymphocyte activation and differentiation. Also, NLRs regulate tissue inflammatory responses. Understanding the molecular mechanisms that are placed at the crossroad of innate and adaptive immune responses, such as NLR-dependent pathways, could lead to the discovery of new therapeutic targets. In this review, we provide a summary of the role of NLRs in the pathogenesis of MS. We also summarize how anti-inflammatory NLRs regulate the immune response within the CNS. Finally, we speculate the therapeutic potential of targeting NLRs in MS.

14.
Autoimmunity ; 49(6): 397-404, 2016 09.
Artículo en Inglés | MEDLINE | ID: mdl-27683954

RESUMEN

Identifying the type of diabetogenic CD8+ T cells that initiate autoimmune diabetes (AID) is a critical step in designing appropriate strategies for the early detection of beta cell-directed autoimmunity and its progression to diabetes. We generated a novel double transgenic (Tg) mouse model on the naturally diabetes resistant C57Bl/6 background, co-expressing two transgenes including a specific TCR anti-lymphocytic choriomeningitis virus nucleoprotein (LCMV-NP) carried by CD8+ T cells and LCMV-NP (as neo-self antigen) expressed by pancreatic beta cells. The resulting double Tg mouse showed partial thymic deletion of the NP-specific CD8+ T cells. The escaping autoreactive NP-specific CD8+ T cells joining the periphery were activated and gained effector functions. Both male and female mice mounted anti-NP antibodies, but only one-fourth adult males spontaneously developed AID. Significant upregulation of the CD44 and CD122 markers as compared to healthy male and female mice characterized the phenotype of diabetogenic CD8+ T cells in diabetic male mice. We also show that only 10% of these CD8+ T cells expressed programmed death 1 receptor (PD-1). Together, these results suggest that in our double Tg mouse model, Ag-specific effector CD44+CD122+PD-1-CD8+ T cell subpopulation is associated with the pathogenesis of AID.


Asunto(s)
Diabetes Mellitus Tipo 1/genética , Diabetes Mellitus Tipo 1/inmunología , Animales , Autoinmunidad , Biomarcadores , Glucemia , Linfocitos T CD4-Positivos/inmunología , Linfocitos T CD4-Positivos/metabolismo , Linfocitos T CD8-positivos/inmunología , Linfocitos T CD8-positivos/metabolismo , Diabetes Mellitus Tipo 1/sangre , Diabetes Mellitus Tipo 1/diagnóstico , Modelos Animales de Enfermedad , Femenino , Humanos , Inmunofenotipificación , Islotes Pancreáticos/inmunología , Islotes Pancreáticos/metabolismo , Islotes Pancreáticos/patología , Recuento de Linfocitos , Masculino , Ratones , Ratones Transgénicos , Receptores de Antígenos de Linfocitos T/genética , Factores Sexuales
15.
J Neuroinflammation ; 12: 198, 2015 Oct 31.
Artículo en Inglés | MEDLINE | ID: mdl-26521018

RESUMEN

BACKGROUND: Multiple sclerosis (MS) is an organ-specific autoimmune disease resulting in demyelinating plaques throughout the central nervous system. In MS, the exact role of microglia remains unknown. On one hand, they can present antigens, skew T cell responses, and upregulate the expression of pro-inflammatory molecules. On the other hand, microglia may express anti-inflammatory molecules and inhibit inflammation. Microglia express a wide variety of immune receptors such as nod-like receptors (NLRs). NLRs are intracellular receptors capable of regulating both innate and adaptive immune responses. Among NLRs, Nlrp12 is largely expressed in cells of myeloid origins. It plays a role in immune inflammatory responses by negatively regulating the nuclear factor-kappa B (NF-κB) pathway. Thus, we hypothesize that Nlrp12 suppresses inflammation and ameliorates the course of MS. METHODS: We used experimental autoimmune encephalomyelitis (EAE), a well-characterized mouse model of MS. EAE was induced in wild-type (WT) and Nlrp12 (-/-) mice with myelin oligodendrocyte glycoprotein (MOG):complete Freud's adjuvant (CFA). The spinal cords of healthy and immunized mice were extracted for immunofluorescence and pro-inflammatory gene analysis. Primary murine cortical microglia cell cultures of WT and Nlrp12 (-/-) were prepared with cortices of 1-day-old pups. The cells were stimulated with lipopolysaccharide (LPS) and analyzed for the expression of pro-inflammatory genes as well as pro-inflammatory molecule secretions. RESULTS: Over the course of 9 weeks, the Nlrp12 (-/-) mice demonstrated increased severity in the disease state, where they developed the disease earlier and reached significantly higher clinical scores compared to the WT mice. The spinal cords of immunized WT mice relative to healthy WT mice revealed a significant increase in Nlrp12 messenger ribonucleic acid (mRNA) expression at 1, 3, and 5 weeks post injection. A significant increase in the expression of pro-inflammatory genes Ccr5, Cox2, and IL-1ß was found in the spinal cords of the Nlrp12 (-/-) mice relative to the WT mice (P < 0.05). A significant increase in the level of gliosis was observed in the spinal cords of the Nlrp12 (-/-) mice compared to the WT mice after 9 weeks of disease (P < 0.05). Primary Nlrp12 (-/-) microglia cells demonstrated a significant increase in inducible nitric oxide synthase (iNOS) expression (P < 0.05) and secreted significantly (P < 0.05) more tumor necrosis factor alpha (TNFα), interleukin-6 (IL-6), and nitric oxide (NO). CONCLUSION: Nlrp12 plays a protective role by suppressing inflammation during the development of EAE. The absence of Nlrp12 results in an increased inflammatory response.


Asunto(s)
Encefalomielitis Autoinmune Experimental/patología , Inflamación/patología , Péptidos y Proteínas de Señalización Intracelular/genética , Animales , Citocinas/biosíntesis , Citocinas/metabolismo , Femenino , Gliosis/genética , Gliosis/patología , Inflamación/genética , Interleucina-4/metabolismo , Lipopolisacáridos/farmacología , Ratones , Ratones Endogámicos C57BL , Ratones Noqueados , Microglía/metabolismo , Esclerosis Múltiple/patología , Óxido Nítrico Sintasa de Tipo II/biosíntesis , Glicoproteína Oligodendrócito-Mielina/metabolismo , Médula Espinal/inmunología , Médula Espinal/patología , Linfocitos T
16.
Nat Prod Commun ; 9(1): 133-6, 2014 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-24660482

RESUMEN

Air-dried aerial parts of wild Cladanthus mixtus were collected from two different regions of Morocco, Bouznika and Oujda, during 2011 and 2012. Forty individual plant samples were hydrodistilled using a Clevenger apparatus and the obtained essential oils were analyzed by GC and GC/MS. The yield obtained varies greatly with a range of 0.3 to 0.8%. The chemical composition of C. mixtus oils changes from one region to another. A total of 53 constituents were identified. To the best of our knowledge, two chemotypes were defined for the first time for this species in the regions studied. 2-Methyl-2-trans-butenyl methacrylate (32.8-35.2%) / ar-curcumene (13-14%) characterize the chemotypeof the C. mixtus plants from Bouznika, and trans-beta-farnesene (35.5-50.3%) the chemotype from Oujda.


Asunto(s)
Asteraceae/química , Aceites Volátiles/química , Marruecos
17.
Results Immunol ; 3: 17-25, 2013.
Artículo en Inglés | MEDLINE | ID: mdl-24600555

RESUMEN

In addition to their classical antigen presenting functions, MHC class II molecules potentiate the TLR-triggered production of pro-inflammatory cytokines. Here, we have addressed the effect of Tollip and MARCH1 on the regulation of MHC II trafficking and TLR signaling. Our results show that MARCH1-deficient mice splenocytes are impaired in their capacity to produce pro-inflammatory cytokines in response to poly(I:C) and that TLR3 and MHC II molecules interact in the endocytic pathway. Knocking down Tollip expression in human CIITA(+) HeLa cells increased expression of HLA-DR but reduced the proportion of MHC II molecules associated with the CLIP peptide. Truncation of the HLA-DR cytoplasmic tails abrogated the effect of Tollip on MHC class II expression. While overexpression of Tollip did not affect HLA-DR levels, it antagonized the function of co-transfected MARCH1. We found that Tollip strongly reduced MARCH1 protein levels and that the two molecules appear to compete for binding to MHC II molecules. Altogether, our results demonstrate that Tollip regulates MHC class II trafficking and that MARCH1 may represent a new Tollip target.

18.
Diabetes ; 62(2): 609-17, 2013 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-22961084

RESUMEN

The histopathological hallmarks of Alzheimer disease (AD) include intraneuronal neurofibrillary tangles composed of abnormally hyperphosphorylated τ protein. Insulin dysfunction might influence AD pathology, as population-based and cohort studies have detected higher AD incidence rates in diabetic patients. But how diabetes affects τ pathology is not fully understood. In this study, we investigated the impact of insulin dysfunction on τ phosphorylation in a genetic model of spontaneous type 1 diabetes: the nonobese diabetic (NOD) mouse. Brains of young and adult female NOD mice were examined, but young NOD mice did not display τ hyperphosphorylation. τ phosphorylation at τ-1 and pS422 epitopes was slightly increased in nondiabetic adult NOD mice. At the onset of diabetes, τ was hyperphosphorylated at the τ-1, AT8, CP13, pS262, and pS422. A subpopulation of diabetic NOD mice became hypothermic, and τ hyperphosphorylation further extended to paired helical filament-1 and TG3 epitopes. Furthermore, elevated τ phosphorylation correlated with an inhibition of protein phosphatase 2A (PP2A) activity. Our data indicate that insulin dysfunction in NOD mice leads to AD-like τ hyperphosphorylation in the brain, with molecular mechanisms likely involving a deregulation of PP2A. This model may be a useful tool to address further mechanistic association between insulin dysfunction and AD pathology.


Asunto(s)
Diabetes Mellitus Tipo 1/metabolismo , Proteína Fosfatasa 2/metabolismo , Proteínas tau/metabolismo , Enfermedad de Alzheimer/metabolismo , Animales , Encéfalo/metabolismo , Química Encefálica , Modelos Animales de Enfermedad , Femenino , Hipotermia , Ratones , Ratones Endogámicos NOD , Ovillos Neurofibrilares/metabolismo , Fosforilación , Isoformas de Proteínas/metabolismo
19.
Cell Immunol ; 272(2): 259-68, 2012.
Artículo en Inglés | MEDLINE | ID: mdl-22070873

RESUMEN

Tolerogenic dendritic cells represent a promising immunotherapy in autoimmunity. However, the molecular mechanisms that drive tolerogenic DCs functions are not well understood. We used GM-CSF or GM-CSF+IL-4 to generate tolerogenic (GM/DCs) and immunogenic (IL-4/DCs) BMDCs from NOD mice, respectively. GM/DCs were resistant to maturation, produced large amounts of IL-10 but not IL-12p70. GM/DCs displayed a reduced capacity to activate diabetogenic CD8(+) T-cells and were efficient to induce Tregs expansion and conversion. LPS stimulation triggered ERK1/2 activation that was sustained in GM/DCs but not in IL-4/DCs. ERK1/2 and AP-1 were involved in IL-10 production in GM/DCs but not in their resistance to maturation. Supershift analysis showed that NF-κB DNA binding complex contains p52 and p65 in GM/DCs, whereas it contains p52, p65 and RelB in IL-4/DCs. ChIP experiments revealed that p65 was recruited to IL-10 promoter following LPS stimulation of GM/DCs whereas its binding to IL-12p35 promoter was abolished. Our results suggest that immunoregulatory functions of GM/DCs are differentially regulated by ERK1/2, AP-1 and NF-κB pathways.


Asunto(s)
Células de la Médula Ósea/inmunología , Células Dendríticas/inmunología , Sistema de Señalización de MAP Quinasas/inmunología , FN-kappa B/inmunología , Factor de Transcripción AP-1/inmunología , Animales , Linfocitos T CD8-positivos/inmunología , Diferenciación Celular/inmunología , Procesos de Crecimiento Celular/inmunología , Inmunoprecipitación de Cromatina/métodos , Proteínas de Unión al ADN/inmunología , Proteínas de Unión al ADN/metabolismo , Interleucina-10/genética , Interleucina-10/inmunología , Interleucina-12/inmunología , Subunidad p35 de la Interleucina-12/genética , Subunidad p35 de la Interleucina-12/inmunología , Interleucina-4/inmunología , Lipopolisacáridos/inmunología , Lipopolisacáridos/farmacología , Ratones , Ratones Endogámicos NOD , Subunidad p52 de NF-kappa B/inmunología , Fenotipo , Regiones Promotoras Genéticas , Linfocitos T Reguladores/inmunología , Factor de Transcripción ReIA/inmunología , Factor de Transcripción ReIB/inmunología
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...