Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 7 de 7
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Sci Adv ; 10(4): eadi8339, 2024 Jan 26.
Artículo en Inglés | MEDLINE | ID: mdl-38277450

RESUMEN

The delta deposits in Jezero crater contain sedimentary records of potentially habitable conditions on Mars. NASA's Perseverance rover is exploring the Jezero western delta with a suite of instruments that include the RIMFAX ground penetrating radar, which provides continuous subsurface images that probe up to 20 meters below the rover. As Perseverance traversed across the contact between the Jezero crater floor and the delta, RIMFAX detected a distinct discontinuity in the subsurface layer structure. Below the contact boundary are older crater floor units exhibiting discontinuous inclined layering. Above the contact boundary are younger basal delta units exhibiting regular horizontal layering. At one location, there is a clear unconformity between the crater floor and delta layers, which implies that the crater floor experienced a period of erosion before the deposition of the overlying delta strata. The regularity and horizontality of the basal delta sediments observed in the radar cross sections indicate that they were deposited in a low-energy lake environment.

2.
Sci Adv ; 8(34): eabp8564, 2022 Aug 26.
Artículo en Inglés | MEDLINE | ID: mdl-36007008

RESUMEN

The Radar Imager for Mars Subsurface Experiment instrument has conducted the first rover-mounted ground-penetrating radar survey of the Martian subsurface. A continuous radar image acquired over the Perseverance rover's initial ~3-kilometer traverse reveals electromagnetic properties and bedrock stratigraphy of the Jezero crater floor to depths of ~15 meters below the surface. The radar image reveals the presence of ubiquitous strongly reflecting layered sequences that dip downward at angles of up to 15 degrees from horizontal in directions normal to the curvilinear boundary of and away from the exposed section of the Séitah formation. The observed slopes, thicknesses, and internal morphology of the inclined stratigraphic sections can be interpreted either as magmatic layering formed in a differentiated igneous body or as sedimentary layering commonly formed in aqueous environments on Earth. The discovery of buried structures on the Jezero crater floor is potentially compatible with a history of igneous activity and a history of multiple aqueous episodes.

3.
Space Sci Rev ; 216(8)2020 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-33568875

RESUMEN

The Mars 2020 Perseverance rover landing site is located within Jezero crater, a ∼ 50 km diameter impact crater interpreted to be a Noachian-aged lake basin inside the western edge of the Isidis impact structure. Jezero hosts remnants of a fluvial delta, inlet and outlet valleys, and infill deposits containing diverse carbonate, mafic, and hydrated minerals. Prior to the launch of the Mars 2020 mission, members of the Science Team collaborated to produce a photogeologic map of the Perseverance landing site in Jezero crater. Mapping was performed at a 1:5000 digital map scale using a 25 cm/pixel High Resolution Imaging Science Experiment (HiRISE) orthoimage mosaic base map and a 1 m/pixel HiRISE stereo digital terrain model. Mapped bedrock and surficial units were distinguished by differences in relative brightness, tone, topography, surface texture, and apparent roughness. Mapped bedrock units are generally consistent with those identified in previously published mapping efforts, but this study's map includes the distribution of surficial deposits and sub-units of the Jezero delta at a higher level of detail than previous studies. This study considers four possible unit correlations to explain the relative age relationships of major units within the map area. Unit correlations include previously published interpretations as well as those that consider more complex interfingering relationships and alternative relative age relationships. The photogeologic map presented here is the foundation for scientific hypothesis development and strategic planning for Perseverance's exploration of Jezero crater.

4.
Nature ; 567(7748): 379-383, 2019 03.
Artículo en Inglés | MEDLINE | ID: mdl-30894724

RESUMEN

More than a third of mid-ocean ridges have a spreading rate of less than 20 millimetres a year1. The lack of deep imaging data means that factors controlling melting and mantle upwelling2,3, the depth to the lithosphere-asthenosphere boundary (LAB)4,5, crustal thickness6-9 and hydrothermal venting are not well understood for ultraslow-spreading ridges10,11. Modern electromagnetic data have greatly improved our understanding of fast-spreading ridges12,13, but have not been available for the ultraslow-spreading ridges. Here we present a detailed 120-kilometre-deep electromagnetic joint inversion model for the ultraslow-spreading Mohns Ridge, combining controlled source electromagnetic and magnetotelluric data. Inversion images show mantle upwelling focused along a narrow, oblique and strongly asymmetric zone coinciding with asymmetric surface uplift. Although the upwelling pattern shows several of the characteristics of a dynamic system3,12-14, it probably reflects passive upwelling controlled by slow and asymmetric plate movements instead. Upwelling asthenosphere and melt can be traced to the inferred depth of the Mohorovicic discontinuity and are enveloped by the resistivity (100 ohm metres) contour denoted the electrical LAB (eLAB). The eLAB may represent a rheological boundary defined by a minimum melt content. We also find that neither the melt-suppression model7 nor the inhibited-migration model15, which explain the correlation between spreading rate and crustal thickness6,16-19, can explain the thin crust below the ridge. A model in which crustal thickness is directly controlled by the melt-producing rock volumes created by the separating plates is more likely. Active melt emplacement into oceanic crust about three kilometres thick culminates in an inferred crustal magma chamber draped by fluid convection cells emanating at the Loki's Castle hydrothermal black smoker field. Fluid convection extends for long lateral distances, exploiting high porosity at mid-crustal levels. The magnitude and long-lived nature of such plumbing systems could promote venting at ultraslow-spreading ridges.

5.
Proc Natl Acad Sci U S A ; 112(15): E1818-27, 2015 Apr 14.
Artículo en Inglés | MEDLINE | ID: mdl-25825769

RESUMEN

The magmatic activity (0-16 Ma) in Iceland is linked to a deep mantle plume that has been active for the past 62 My. Icelandic and northeast Atlantic basalts contain variable proportions of two enriched components, interpreted as recycled oceanic crust supplied by the plume, and subcontinental lithospheric mantle derived from the nearby continental margins. A restricted area in southeast Iceland--and especially the Öræfajökull volcano--is characterized by a unique enriched-mantle component (EM2-like) with elevated (87)Sr/(86)Sr and (207)Pb/(204)Pb. Here, we demonstrate through modeling of Sr-Nd-Pb abundances and isotope ratios that the primitive Öræfajökull melts could have assimilated 2-6% of underlying continental crust before differentiating to more evolved melts. From inversion of gravity anomaly data (crustal thickness), analysis of regional magnetic data, and plate reconstructions, we propose that continental crust beneath southeast Iceland is part of ∼350-km-long and 70-km-wide extension of the Jan Mayen Microcontinent (JMM). The extended JMM was marginal to East Greenland but detached in the Early Eocene (between 52 and 47 Mya); by the Oligocene (27 Mya), all parts of the JMM permanently became part of the Eurasian plate following a westward ridge jump in the direction of the Iceland plume.

6.
Astrobiology ; 14(9): 780-97, 2014 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-25238325

RESUMEN

The characterization of any organic molecules on Mars is a top-priority objective for the ExoMars European Space Agency-Russian Federal Space Agency joint mission. The main instrument for organic analysis on the ExoMars rover is the Mars Organic Molecule Analyzer (MOMA). In preparation for the upcoming mission in 2018, different Mars analog samples are studied with MOMA and include samples collected during the Arctic Mars Analog Svalbard Expedition (AMASE) to Svalbard, Norway. In this paper, we present results obtained from two different Mars analog sites visited during AMASE11, Colletthøgda and Botniahalvøya. Measurements were performed on the samples during AMASE11 with a MOMA gas chromatograph (GC) prototype connected to a commercial mass spectrometer (MS) and later in home institutions with commercial pyrolysis-GCMS instruments. In addition, derivatization experiments were performed on the samples during AMASE11 and in the laboratory. Three different samples were studied from the Colletthøgda that included one evaporite and two carbonate-bearing samples. Only a single sample was studied from the Botniahalvøya site, a weathered basalt covered by a shiny surface consisting of manganese and iron oxides. Organic molecules were detected in all four samples and included aromatics, long-chained hydrocarbons, amino acids, nucleobases, sugars, and carboxylic acids. Both pyrolysis and derivatization indicated the presence of extinct biota by the detection of carboxylic acids in the samples from Colletthøgda, while the presence of amino acids, nucleobases, carboxylic acids, and sugars indicated an active biota in the sample from Botniahalvøya. The results obtained with the prototype flight model in the field coupled with repeat measurements with commercial instruments within the laboratory were reassuringly similar. This demonstrates the performance of the MOMA instrument and validates that the instrument will aid researchers in their efforts to answer fundamental questions regarding the speciation and possible source of organic content on Mars.


Asunto(s)
Exobiología/instrumentación , Cromatografía de Gases y Espectrometría de Masas/instrumentación , Marte , Compuestos Orgánicos/análisis , Medio Ambiente Extraterrestre/química , Fenómenos Geológicos , Calor , Modelos Químicos , Noruega , Fenómenos Químicos Orgánicos , Origen de la Vida , Vuelo Espacial/instrumentación
7.
Astrobiology ; 9(5): 455-65, 2009 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-19496672

RESUMEN

Analytical approaches to extant and extinct life detection involve molecular detection often at trace levels. Thus, removal of biological materials and other organic molecules from the surfaces of devices used for sampling is essential for ascertaining meaningful results. Organic decontamination to levels consistent with null values on life-detection instruments is particularly challenging at remote field locations where Mars analog field investigations are carried out. Here, we present a seven-step, multi-reagent decontamination method that can be applied to sampling devices while in the field. In situ lipopolysaccharide detection via low-level endotoxin assays and molecular detection via gas chromatography-mass spectrometry were used to test the effectiveness of the decontamination protocol for sampling of glacial ice with a coring device and for sampling of sediments with a rover scoop during deployment at Arctic Mars-analog sites in Svalbard, Norway. Our results indicate that the protocols and detection technique sufficiently remove and detect low levels of molecular constituents necessary for life-detection tests.


Asunto(s)
Exobiología/instrumentación , Exobiología/métodos , Medio Ambiente Extraterrestre , Cromatografía de Gases y Espectrometría de Masas , Lipopolisacáridos/análisis , Compuestos Orgánicos/análisis , Propiedades de Superficie
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...