Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 48
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
2.
Nat Plants ; 10(6): 874-879, 2024 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-38816499

RESUMEN

Plant photosystem I (PSI) consists of at least 13 nuclear-encoded and 4 chloroplast-encoded subunits that together act as a sunlight-driven oxidoreductase. Here we report the structure of a PSI assembly intermediate that we isolated from greening oat seedlings. The assembly intermediate shows an absence of at least eight subunits, including PsaF and LHCI, and lacks photoreduction activity. The data show that PsaF is a regulatory checkpoint that promotes the assembly of LHCI, effectively coupling biogenesis to function.


Asunto(s)
Complejo de Proteína del Fotosistema I , Complejo de Proteína del Fotosistema I/metabolismo , Avena/metabolismo , Avena/genética , Proteínas de Plantas/metabolismo , Proteínas de Plantas/genética , Complejos de Proteína Captadores de Luz/metabolismo , Complejos de Proteína Captadores de Luz/genética , Plantones/genética , Plantones/metabolismo
3.
Nat Commun ; 15(1): 4272, 2024 May 20.
Artículo en Inglés | MEDLINE | ID: mdl-38769321

RESUMEN

The mitoribosome translates mitochondrial mRNAs and regulates energy conversion that is a signature of aerobic life forms. We present a 2.2 Å resolution structure of human mitoribosome together with validated mitoribosomal RNA (rRNA) modifications, including aminoacylated CP-tRNAVal. The structure shows how mitoribosomal proteins stabilise binding of mRNA and tRNA helping to align it in the decoding center, whereas the GDP-bound mS29 stabilizes intersubunit communication. Comparison between different states, with respect to tRNA position, allowed us to characterize a non-canonical L1 stalk, and molecular dynamics simulations revealed how it facilitates tRNA transitions in a way that does not require interactions with rRNA. We also report functionally important polyamines that are depleted when cells are subjected to an antibiotic treatment. The structural, biochemical, and computational data illuminate the principal functional components of the translation mechanism in mitochondria and provide a description of the structure and function of the human mitoribosome.


Asunto(s)
Ribosomas Mitocondriales , ARN de Transferencia , Humanos , ARN de Transferencia/metabolismo , ARN de Transferencia/química , ARN de Transferencia/genética , Ribosomas Mitocondriales/metabolismo , Ribosomas Mitocondriales/química , Ligandos , Simulación de Dinámica Molecular , ARN Mensajero/metabolismo , ARN Mensajero/genética , Mitocondrias/metabolismo , ARN Ribosómico/metabolismo , ARN Ribosómico/química , Proteínas Ribosómicas/metabolismo , Proteínas Ribosómicas/química , Guanosina Difosfato/metabolismo , Poliaminas/metabolismo , Poliaminas/química , Unión Proteica
4.
Mol Cell ; 84(2): 359-374.e8, 2024 Jan 18.
Artículo en Inglés | MEDLINE | ID: mdl-38199006

RESUMEN

Friedreich's ataxia (FA) is a debilitating, multisystemic disease caused by the depletion of frataxin (FXN), a mitochondrial iron-sulfur (Fe-S) cluster biogenesis factor. To understand the cellular pathogenesis of FA, we performed quantitative proteomics in FXN-deficient human cells. Nearly every annotated Fe-S cluster-containing protein was depleted, indicating that as a rule, cluster binding confers stability to Fe-S proteins. We also observed depletion of a small mitoribosomal assembly factor METTL17 and evidence of impaired mitochondrial translation. Using comparative sequence analysis, mutagenesis, biochemistry, and cryoelectron microscopy, we show that METTL17 binds to the mitoribosomal small subunit during late assembly and harbors a previously unrecognized [Fe4S4]2+ cluster required for its stability. METTL17 overexpression rescued the mitochondrial translation and bioenergetic defects, but not the cellular growth, of FXN-depleted cells. These findings suggest that METTL17 acts as an Fe-S cluster checkpoint, promoting translation of Fe-S cluster-rich oxidative phosphorylation (OXPHOS) proteins only when Fe-S cofactors are replete.


Asunto(s)
Ataxia de Friedreich , Proteínas Hierro-Azufre , Humanos , Proteínas Hierro-Azufre/genética , Proteínas Hierro-Azufre/metabolismo , Microscopía por Crioelectrón , Frataxina , Biosíntesis de Proteínas , Mitocondrias/genética , Mitocondrias/metabolismo , Ataxia de Friedreich/metabolismo , Metiltransferasas/genética , Metiltransferasas/metabolismo
5.
bioRxiv ; 2023 Jul 15.
Artículo en Inglés | MEDLINE | ID: mdl-37503168

RESUMEN

The mitoribosome translates mitochondrial mRNAs and regulates energy conversion that is a signature of aerobic life forms. We present a 2.2 Å resolution structure of human mitoribosome together with validated mitoribosomal RNA (rRNA) modifications, including aminoacylated CP-tRNA Val . The structure shows how mitoribosomal proteins stabilise binding of mRNA and tRNA helping to align it in the decoding center, whereas the GDP-bound mS29 stabilizes intersubunit communication. Comparison between different states, with respect to tRNA position, allowed to characterize a non-canonical L1 stalk, and molecular dynamics simulations revealed how it facilitates tRNA transition in a way that does not require interactions with rRNA. We also report functionally important polyamines that are depleted when cells are subjected to an antibiotic treatment. The structural, biochemical, and computational data illuminate the principal functional components of the translation mechanism in mitochondria and provide the most complete description so far of the structure and function of the human mitoribosome.

6.
Nature ; 615(7954): 934-938, 2023 03.
Artículo en Inglés | MEDLINE | ID: mdl-36949187

RESUMEN

Mitochondrial energy conversion requires an intricate architecture of the inner mitochondrial membrane1. Here we show that a supercomplex containing all four respiratory chain components contributes to membrane curvature induction in ciliates. We report cryo-electron microscopy and cryo-tomography structures of the supercomplex that comprises 150 different proteins and 311 bound lipids, forming a stable 5.8-MDa assembly. Owing to subunit acquisition and extension, complex I associates with a complex IV dimer, generating a wedge-shaped gap that serves as a binding site for complex II. Together with a tilted complex III dimer association, it results in a curved membrane region. Using molecular dynamics simulations, we demonstrate that the divergent supercomplex actively contributes to the membrane curvature induction and tubulation of cristae. Our findings highlight how the evolution of protein subunits of respiratory complexes has led to the I-II-III2-IV2 supercomplex that contributes to the shaping of the bioenergetic membrane, thereby enabling its functional specialization.


Asunto(s)
Microscopía por Crioelectrón , Complejo III de Transporte de Electrones , Complejo II de Transporte de Electrones , Complejo IV de Transporte de Electrones , Complejo I de Transporte de Electrón , Mitocondrias , Membranas Mitocondriales , Transporte de Electrón , Complejo III de Transporte de Electrones/química , Complejo III de Transporte de Electrones/metabolismo , Complejo III de Transporte de Electrones/ultraestructura , Complejo IV de Transporte de Electrones/química , Complejo IV de Transporte de Electrones/metabolismo , Complejo IV de Transporte de Electrones/ultraestructura , Mitocondrias/química , Mitocondrias/enzimología , Mitocondrias/metabolismo , Mitocondrias/ultraestructura , Membranas Mitocondriales/química , Membranas Mitocondriales/enzimología , Membranas Mitocondriales/metabolismo , Membranas Mitocondriales/ultraestructura , Complejo II de Transporte de Electrones/química , Complejo II de Transporte de Electrones/metabolismo , Complejo II de Transporte de Electrones/ultraestructura , Complejo I de Transporte de Electrón/química , Complejo I de Transporte de Electrón/metabolismo , Complejo I de Transporte de Electrón/ultraestructura , Multimerización de Proteína , Subunidades de Proteína/química , Subunidades de Proteína/metabolismo , Simulación de Dinámica Molecular , Sitios de Unión , Evolución Molecular
7.
Elife ; 112022 12 08.
Artículo en Inglés | MEDLINE | ID: mdl-36480258

RESUMEN

The mitoribosome regulates cellular energy production, and its dysfunction is associated with aging. Inhibition of the mitoribosome can be caused by off-target binding of antimicrobial drugs and was shown to be coupled with a bilateral decreased visual acuity. Previously, we reported mitochondria-specific protein aspects of the mitoribosome, and in this article we present a 2.4-Å resolution structure of the small subunit in a complex with the anti-tuberculosis drug streptomycin that reveals roles of non-protein components. We found iron-sulfur clusters that are coordinated by different mitoribosomal proteins, nicotinamide adenine dinucleotide (NAD) associated with rRNA insertion, and posttranslational modifications. This is the first evidence of inter-protein coordination of iron-sulfur, and the finding of iron-sulfur clusters and NAD as fundamental building blocks of the mitoribosome directly links to mitochondrial disease and aging. We also report details of streptomycin interactions, suggesting that the mitoribosome-bound streptomycin is likely to be in hydrated gem-diol form and can be subjected to other modifications by the cellular milieu. The presented approach of adding antibiotics to cultured cells can be used to define their native structures in a bound form under more physiological conditions, and since streptomycin is a widely used drug for treatment, the newly resolved features can serve as determinants for targeting.


Asunto(s)
NAD , Estreptomicina , Estreptomicina/farmacología , Azufre
8.
Nat Plants ; 8(10): 1191-1201, 2022 10.
Artículo en Inglés | MEDLINE | ID: mdl-36229605

RESUMEN

Photosystem I (PSI) enables photo-electron transfer and regulates photosynthesis in the bioenergetic membranes of cyanobacteria and chloroplasts. Being a multi-subunit complex, its macromolecular organization affects the dynamics of photosynthetic membranes. Here we reveal a chloroplast PSI from the green alga Chlamydomonas reinhardtii that is organized as a homodimer, comprising 40 protein subunits with 118 transmembrane helices that provide scaffold for 568 pigments. Cryogenic electron microscopy identified that the absence of PsaH and Lhca2 gives rise to a head-to-head relative orientation of the PSI-light-harvesting complex I monomers in a way that is essentially different from the oligomer formation in cyanobacteria. The light-harvesting protein Lhca9 is the key element for mediating this dimerization. The interface between the monomers is lacking PsaH and thus partially overlaps with the surface area that would bind one of the light-harvesting complex II complexes in state transitions. We also define the most accurate available PSI-light-harvesting complex I model at 2.3 Å resolution, including a flexibly bound electron donor plastocyanin, and assign correct identities and orientations to all the pigments, as well as 621 water molecules that affect energy transfer pathways.


Asunto(s)
Cianobacterias , Complejo de Proteína del Fotosistema I , Complejo de Proteína del Fotosistema I/metabolismo , Plastocianina , Complejos de Proteína Captadores de Luz/metabolismo , Subunidades de Proteína/metabolismo , Cianobacterias/metabolismo , Agua/metabolismo , Complejo de Proteína del Fotosistema II/metabolismo
9.
Nat Commun ; 13(1): 5989, 2022 10 11.
Artículo en Inglés | MEDLINE | ID: mdl-36220811

RESUMEN

Mitochondrial ATP synthase forms stable dimers arranged into oligomeric assemblies that generate the inner-membrane curvature essential for efficient energy conversion. Here, we report cryo-EM structures of the intact ATP synthase dimer from Trypanosoma brucei in ten different rotational states. The model consists of 25 subunits, including nine lineage-specific, as well as 36 lipids. The rotary mechanism is influenced by the divergent peripheral stalk, conferring a greater conformational flexibility. Proton transfer in the lumenal half-channel occurs via a chain of five ordered water molecules. The dimerization interface is formed by subunit-g that is critical for interactions but not for the catalytic activity. Although overall dimer architecture varies among eukaryotes, we find that subunit-g together with subunit-e form an ancestral oligomerization motif, which is shared between the trypanosomal and mammalian lineages. Therefore, our data defines the subunit-g/e module as a structural component determining ATP synthase oligomeric assemblies.


Asunto(s)
ATPasas de Translocación de Protón Mitocondriales , Animales , Lípidos , Mamíferos , ATPasas de Translocación de Protón Mitocondriales/metabolismo , Subunidades de Proteína/metabolismo , Protones , Agua
10.
Nat Commun ; 13(1): 6132, 2022 10 17.
Artículo en Inglés | MEDLINE | ID: mdl-36253367

RESUMEN

Mitoribosomes of green algae display a great structural divergence from their tracheophyte relatives, with fragmentation of both rRNA and proteins as a defining feature. Here, we report a 2.9 Å resolution structure of the mitoribosome from the alga Polytomella magna harbouring a reduced rRNA split into 13 fragments. We found that the rRNA contains a non-canonical reduced form of the 5S, as well as a permutation of the LSU domain I. The mt-5S rRNA is stabilised by mL40 that is also found in mitoribosomes lacking the 5S, which suggests an evolutionary pathway. Through comparison to other ribosomes with fragmented rRNAs, we observe that the pattern is shared across large evolutionary distances, and between cellular compartments, indicating an evolutionary convergence and supporting the concept of a primordial fragmented ribosome. On the protein level, eleven peripherally associated HEAT-repeat proteins are involved in the binding of 3' rRNA termini, and the structure features a prominent pseudo-trimer of one of them (mL116). Finally, in the exit tunnel, mL128 constricts the tunnel width of the vestibular area, and mL105, a homolog of a membrane targeting component mediates contacts with an inner membrane bound insertase. Together, the structural analysis provides insight into the evolution of the ribosomal machinery in mitochondria.


Asunto(s)
Chlorophyta , Ribosomas Mitocondriales , Chlorophyta/metabolismo , Mitocondrias/metabolismo , Ribosomas Mitocondriales/metabolismo , ARN Ribosómico/metabolismo , ARN Ribosómico 5S/metabolismo , Ribosomas/metabolismo
11.
Plant Commun ; 3(5): 100342, 2022 09 12.
Artículo en Inglés | MEDLINE | ID: mdl-35643637

RESUMEN

Protein synthesis in crop plants contributes to the balance of food and fuel on our planet, which influences human metabolic activity and lifespan. Protein synthesis can be regulated with respect to changing environmental cues via the deposition of chemical modifications into rRNA. Here, we present the structure of a plant ribosome from tomato and a quantitative mass spectrometry analysis of its rRNAs. The study reveals fine features of the ribosomal proteins and 71 plant-specific rRNA modifications, and it re-annotates 30 rRNA residues in the available sequence. At the protein level, isoAsp is found in position 137 of uS11, and a zinc finger previously believed to be universal is missing from eL34, suggesting a lower effect of zinc deficiency on protein synthesis in plants. At the rRNA level, the plant ribosome differs markedly from its human counterpart with respect to the spatial distribution of modifications. Thus, it represents an additional layer of gene expression regulation, highlighting the molecular signature of a plant ribosome. The results provide a reference model of a plant ribosome for structural studies and an accurate marker for molecular ecology.


Asunto(s)
ARN Ribosómico , Proteínas Ribosómicas , Ribosomas , Solanum lycopersicum , Microscopía por Crioelectrón , Solanum lycopersicum/genética , Biosíntesis de Proteínas , ARN Ribosómico/química , Proteínas Ribosómicas/química , Ribosomas/química , Ribosomas/ultraestructura
12.
Nature ; 606(7914): 603-608, 2022 06.
Artículo en Inglés | MEDLINE | ID: mdl-35676484

RESUMEN

Mitoribosomes are essential for the synthesis and maintenance of bioenergetic proteins. Here we use cryo-electron microscopy to determine a series of the small mitoribosomal subunit (SSU) intermediates in complex with auxiliary factors, revealing a sequential assembly mechanism. The methyltransferase TFB1M binds to partially unfolded rRNA h45 that is promoted by RBFA, while the mRNA channel is blocked. This enables binding of METTL15 that promotes further rRNA maturation and a large conformational change of RBFA. The new conformation allows initiation factor mtIF3 to already occupy the subunit interface during the assembly. Finally, the mitochondria-specific ribosomal protein mS37 (ref. 1) outcompetes RBFA to complete the assembly with the SSU-mS37-mtIF3 complex2 that proceeds towards mtIF2 binding and translation initiation. Our results explain how the action of step-specific factors modulate the dynamic assembly of the SSU, and adaptation of a unique protein, mS37, links the assembly to initiation to establish the catalytic human mitoribosome.


Asunto(s)
Ribosomas Mitocondriales , Subunidades Ribosómicas Pequeñas , Humanos , Microscopía por Crioelectrón , Proteínas de Unión al ADN/química , Proteínas de Unión al ADN/metabolismo , Factores Eucarióticos de Iniciación/química , Factores Eucarióticos de Iniciación/metabolismo , Mitocondrias/química , Mitocondrias/metabolismo , Proteínas Mitocondriales/química , Proteínas Mitocondriales/metabolismo , Ribosomas Mitocondriales/química , Ribosomas Mitocondriales/metabolismo , Ribosomas Mitocondriales/ultraestructura , Proteínas Ribosómicas/química , Proteínas Ribosómicas/metabolismo , Subunidades Ribosómicas Pequeñas/química , Subunidades Ribosómicas Pequeñas/metabolismo , Subunidades Ribosómicas Pequeñas/ultraestructura , ARN Ribosómico/química , ARN Ribosómico/metabolismo , Proteínas de Unión al ARN/química , Proteínas de Unión al ARN/metabolismo , Factores de Transcripción/química , Factores de Transcripción/metabolismo
13.
Nat Plants ; 8(1): 14-17, 2022 01.
Artículo en Inglés | MEDLINE | ID: mdl-34916598
14.
Cell Rep ; 35(4): 109024, 2021 04 27.
Artículo en Inglés | MEDLINE | ID: mdl-33910005

RESUMEN

Glioblastoma stem cells (GSCs) resist current glioblastoma (GBM) therapies. GSCs rely highly on oxidative phosphorylation (OXPHOS), whose function requires mitochondrial translation. Here we explore the therapeutic potential of targeting mitochondrial translation and report the results of high-content screening with putative blockers of mitochondrial ribosomes. We identify the bacterial antibiotic quinupristin/dalfopristin (Q/D) as an effective suppressor of GSC growth. Q/D also decreases the clonogenicity of GSCs in vitro, consequently dysregulating the cell cycle and inducing apoptosis. Cryoelectron microscopy (cryo-EM) reveals that Q/D binds to the large mitoribosomal subunit, inhibiting mitochondrial protein synthesis and functionally dysregulating OXPHOS complexes. These data suggest that targeting mitochondrial translation could be explored to therapeutically suppress GSC growth in GBM and that Q/D could potentially be repurposed for cancer treatment.


Asunto(s)
Glioblastoma/genética , Mitocondrias/metabolismo , Células Madre Neoplásicas/metabolismo , Línea Celular Tumoral , Proliferación Celular , Humanos
15.
Science ; 371(6531): 846-849, 2021 02 19.
Artículo en Inglés | MEDLINE | ID: mdl-33602856

RESUMEN

Mitochondrial ribosomes (mitoribosomes) are tethered to the mitochondrial inner membrane to facilitate the cotranslational membrane insertion of the synthesized proteins. We report cryo-electron microscopy structures of human mitoribosomes with nascent polypeptide, bound to the insertase oxidase assembly 1-like (OXA1L) through three distinct contact sites. OXA1L binding is correlated with a series of conformational changes in the mitoribosomal large subunit that catalyze the delivery of newly synthesized polypeptides. The mechanism relies on the folding of mL45 inside the exit tunnel, forming two specific constriction sites that would limit helix formation of the nascent chain. A gap is formed between the exit and the membrane, making the newly synthesized proteins accessible. Our data elucidate the basis by which mitoribosomes interact with the OXA1L insertase to couple protein synthesis and membrane delivery.


Asunto(s)
Complejo IV de Transporte de Electrones/metabolismo , Proteínas de la Membrana/biosíntesis , Proteínas Mitocondriales/metabolismo , Ribosomas Mitocondriales/metabolismo , Proteínas Nucleares/metabolismo , Biosíntesis de Proteínas , Microscopía por Crioelectrón , Complejo IV de Transporte de Electrones/química , Humanos , Proteínas de la Membrana/química , Mitocondrias/metabolismo , Membranas Mitocondriales/metabolismo , Proteínas Mitocondriales/química , Ribosomas Mitocondriales/ultraestructura , Modelos Moleculares , Proteínas Nucleares/química , Unión Proteica , Conformación Proteica , Pliegue de Proteína , Ribosomas/metabolismo
16.
EMBO J ; 40(6): e106292, 2021 03 15.
Artículo en Inglés | MEDLINE | ID: mdl-33576519

RESUMEN

Mitoribosomes consist of ribosomal RNA and protein components, coordinated assembly of which is critical for function. We used mitoribosomes from Trypanosoma brucei with reduced RNA and increased protein mass to provide insights into the biogenesis of the mitoribosomal large subunit. Structural characterization of a stable assembly intermediate revealed 22 assembly factors, some of which have orthologues/counterparts/homologues in mammalian genomes. These assembly factors form a protein network that spans a distance of 180 Å, shielding the ribosomal RNA surface. The central protuberance and L7/L12 stalk are not assembled entirely and require removal of assembly factors and remodeling of the mitoribosomal proteins to become functional. The conserved proteins GTPBP7 and mt-EngA are bound together at the subunit interface in proximity to the peptidyl transferase center. A mitochondrial acyl-carrier protein plays a role in docking the L1 stalk, which needs to be repositioned during maturation. Additional enzymatically deactivated factors scaffold the assembly while the exit tunnel is blocked. Together, this extensive network of accessory factors stabilizes the immature sites and connects the functionally important regions of the mitoribosomal large subunit.


Asunto(s)
Proteínas de Unión al GTP/metabolismo , Ribosomas Mitocondriales/metabolismo , Biosíntesis de Proteínas/fisiología , Subunidades Ribosómicas Grandes/metabolismo , Trypanosoma brucei brucei/metabolismo , Microscopía por Crioelectrón , Unión Proteica/fisiología , Conformación Proteica , ARN Ribosómico/genética
17.
Nat Commun ; 12(1): 120, 2021 01 05.
Artículo en Inglés | MEDLINE | ID: mdl-33402698

RESUMEN

Mitochondrial ATP synthase plays a key role in inducing membrane curvature to establish cristae. In Apicomplexa causing diseases such as malaria and toxoplasmosis, an unusual cristae morphology has been observed, but its structural basis is unknown. Here, we report that the apicomplexan ATP synthase assembles into cyclic hexamers, essential to shape their distinct cristae. Cryo-EM was used to determine the structure of the hexamer, which is held together by interactions between parasite-specific subunits in the lumenal region. Overall, we identified 17 apicomplexan-specific subunits, and a minimal and nuclear-encoded subunit-a. The hexamer consists of three dimers with an extensive dimer interface that includes bound cardiolipins and the inhibitor IF1. Cryo-ET and subtomogram averaging revealed that hexamers arrange into ~20-megadalton pentagonal pyramids in the curved apical membrane regions. Knockout of the linker protein ATPTG11 resulted in the loss of pentagonal pyramids with concomitant aberrantly shaped cristae. Together, this demonstrates that the unique macromolecular arrangement is critical for the maintenance of cristae morphology in Apicomplexa.


Asunto(s)
Mitocondrias/ultraestructura , Membranas Mitocondriales/ultraestructura , ATPasas de Translocación de Protón Mitocondriales/química , Subunidades de Proteína/química , Proteínas Protozoarias/química , Toxoplasma/ultraestructura , Sitios de Unión , Cardiolipinas/química , Cardiolipinas/metabolismo , Microscopía por Crioelectrón , Expresión Génica , Mitocondrias/genética , Mitocondrias/metabolismo , Membranas Mitocondriales/metabolismo , ATPasas de Translocación de Protón Mitocondriales/genética , ATPasas de Translocación de Protón Mitocondriales/metabolismo , Modelos Moleculares , Unión Proteica , Conformación Proteica en Hélice alfa , Conformación Proteica en Lámina beta , Dominios y Motivos de Interacción de Proteínas , Multimerización de Proteína , Subunidades de Proteína/genética , Subunidades de Proteína/metabolismo , Proteínas/química , Proteínas/genética , Proteínas/metabolismo , Proteínas Protozoarias/genética , Proteínas Protozoarias/metabolismo , Especificidad por Sustrato , Termodinámica , Toxoplasma/genética , Toxoplasma/metabolismo , Proteína Inhibidora ATPasa
18.
Methods Mol Biol ; 2192: 197-210, 2021.
Artículo en Inglés | MEDLINE | ID: mdl-33230775

RESUMEN

Mitochondrial ribosomes (mitoribosomes) are specialized machineries that carry out the synthesis of a limited number of proteins encoded in the mitochondrial genome, including components of the oxidative phosphorylation pathway. They have incorporated several structural features distinguishing them from bacterial and eukaryotic cytosolic counterparts. Our current understanding of the assembly and functioning of mitoribosomes is limited, and recent developments in cryo-EM provide promising directions for detailed investigation. Here we describe methods to purify mitoribosomes from human embryonic kidney cells for cryo-EM studies.


Asunto(s)
Microscopía por Crioelectrón/métodos , Ribosomas Mitocondriales/química , Ribosomas Mitocondriales/ultraestructura , Complejo I de Transporte de Electrón/metabolismo , Procesamiento Automatizado de Datos , Genoma Mitocondrial , Células HEK293 , Humanos , Proteínas Mitocondriales/metabolismo , Ribosomas Mitocondriales/metabolismo , Fosforilación Oxidativa , Biosíntesis de Proteínas , Proteínas Ribosómicas/metabolismo
19.
Nat Commun ; 11(1): 5342, 2020 10 22.
Artículo en Inglés | MEDLINE | ID: mdl-33093501

RESUMEN

Mitochondrial ATP synthases form functional homodimers to induce cristae curvature that is a universal property of mitochondria. To expand on the understanding of this fundamental phenomenon, we characterized the unique type III mitochondrial ATP synthase in its dimeric and tetrameric form. The cryo-EM structure of a ciliate ATP synthase dimer reveals an unusual U-shaped assembly of 81 proteins, including a substoichiometrically bound ATPTT2, 40 lipids, and co-factors NAD and CoQ. A single copy of subunit ATPTT2 functions as a membrane anchor for the dimeric inhibitor IF1. Type III specific linker proteins stably tie the ATP synthase monomers in parallel to each other. The intricate dimer architecture is scaffolded by an extended subunit-a that provides a template for both intra- and inter-dimer interactions. The latter results in the formation of tetramer assemblies, the membrane part of which we determined to 3.1 Å resolution. The structure of the type III ATP synthase tetramer and its associated lipids suggests that it is the intact unit propagating the membrane curvature.


Asunto(s)
ATPasas de Translocación de Protón Mitocondriales/química , Microscopía por Crioelectrón , Lípidos de la Membrana/química , Membranas Mitocondriales/química , Membranas Mitocondriales/enzimología , Membranas Mitocondriales/ultraestructura , ATPasas de Translocación de Protón Mitocondriales/clasificación , ATPasas de Translocación de Protón Mitocondriales/ultraestructura , Modelos Moleculares , Dominios y Motivos de Interacción de Proteínas , Multimerización de Proteína , Estructura Cuaternaria de Proteína , Subunidades de Proteína/química , Proteínas/química , Proteínas/ultraestructura , Proteínas Protozoarias/química , Proteínas Protozoarias/ultraestructura , Tetrahymena thermophila/enzimología , Tetrahymena thermophila/ultraestructura , Proteína Inhibidora ATPasa
20.
Nat Commun ; 11(1): 5187, 2020 10 14.
Artículo en Inglés | MEDLINE | ID: mdl-33056988

RESUMEN

Mitoribosomes are specialized protein synthesis machineries in mitochondria. However, how mRNA binds to its dedicated channel, and tRNA moves as the mitoribosomal subunit rotate with respect to each other is not understood. We report models of the translating fungal mitoribosome with mRNA, tRNA and nascent polypeptide, as well as an assembly intermediate. Nicotinamide adenine dinucleotide (NAD) is found in the central protuberance of the large subunit, and the ATPase inhibitory factor 1 (IF1) in the small subunit. The models of the active mitoribosome explain how mRNA binds through a dedicated protein platform on the small subunit, tRNA is translocated with the help of the protein mL108, bridging it with L1 stalk on the large subunit, and nascent polypeptide paths through a newly shaped exit tunnel involving a series of structural rearrangements. An assembly intermediate is modeled with the maturation factor Atp25, providing insight into the biogenesis of the mitoribosomal large subunit and translation regulation.


Asunto(s)
Mitocondrias/metabolismo , Ribosomas Mitocondriales/metabolismo , Neurospora crassa/fisiología , Biosíntesis de Proteínas , Fraccionamiento Celular , Microscopía por Crioelectrón , Proteínas Fúngicas/metabolismo , Mitocondrias/ultraestructura , Proteínas Mitocondriales/metabolismo , Ribosomas Mitocondriales/ultraestructura , Modelos Moleculares , NAD/metabolismo , Proteínas/metabolismo , ARN Mensajero/metabolismo , ARN Ribosómico/metabolismo , ARN de Transferencia/metabolismo , Proteínas Ribosómicas/metabolismo , Proteína Inhibidora ATPasa
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...