Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 25
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Nat Commun ; 15(1): 2617, 2024 Mar 23.
Artículo en Inglés | MEDLINE | ID: mdl-38521862

RESUMEN

Recent advancements in membrane-assisted seawater electrolysis powered by renewable energy offer a sustainable path to green hydrogen production. However, its large-scale implementation faces challenges due to slow power-to-hydrogen (P2H) conversion rates. Here we report a modular forward osmosis-water splitting (FOWS) system that integrates a thin-film composite FO membrane for water extraction with alkaline water electrolysis (AWE), denoted as FOWSAWE. This system generates high-purity hydrogen directly from wastewater at a rate of 448 Nm3 day-1 m-2 of membrane area, over 14 times faster than the state-of-the-art practice, with specific energy consumption as low as 3.96 kWh Nm-3. The rapid hydrogen production rate results from the utilisation of 1 M potassium hydroxide as a draw solution to extract water from wastewater, and as the electrolyte of AWE to split water and produce hydrogen. The current system enables this through the use of a potassium hydroxide-tolerant and hydrophilic FO membrane. The established water-hydrogen balance model can be applied to design modular FO and AWE units to meet demands at various scales, from households to cities, and from different water sources. The FOWSAWE system is a sustainable and an economical approach for producing hydrogen at a record-high rate directly from wastewater, marking a significant leap in P2H practice.

2.
Adv Mater ; : e2307950, 2023 Sep 29.
Artículo en Inglés | MEDLINE | ID: mdl-37772325

RESUMEN

The emergence of nano innovations in membrane distillation (MD) has garnered increasing scientific interest. This enables the exploration of state-of-the-art nano-enabled MD membranes with desirable properties, which significantly improve the efficiency and reliability of the MD process and open up opportunities for achieving a sustainable water-energy-environment (WEE) nexus. This comprehensive review provides broad coverage and in-depth analysis of recent innovations in nano-enabled MD membranes, focusing on their role in achieving desirable properties, such as strong liquid-repellence, high resistance to scaling, fouling, and wetting, as well as efficient self-heating and self-cleaning functionalities. The recent developments in nano-enhanced photothermal-catalytic applications for water-energy co-generation within a single MD system are also discussed. Furthermore, the bottlenecks are identified that impede the scale-up of nanoenhanced MD membranes and a future roadmap is proposed for their sustainable commercialiation. This holistic overview is expected to inspire future research and development efforts to fully harness the potential of nano-enabled MD membranes to achieve sustainable integration of water, energy, and the environment.

3.
Water Res ; 245: 120613, 2023 Oct 15.
Artículo en Inglés | MEDLINE | ID: mdl-37738940

RESUMEN

Since the discovery of nanobubbles (NBs) in 1994, NBs have been attracting growing attention for their fascinating properties and have been studied for application in various environmental fields, including water and wastewater treatment. However, despite the intensive research efforts on NBs' fundamental properties, especially in the past five years, controversies and disagreements in the published literature have hindered their practical implementation. So far, reviews of NB research have mainly focused on NBs' role in specific treatment processes or general applications, highlighting proof-of-concept and success stories primarily at the laboratory scale. As such, there lacks a rigorous review that authenticates NBs' potential beyond the bench scale. This review aims to provide a comprehensive and up-to-date analysis of the recent progress in NB research in the field of water and wastewater treatment at different scales, along with identifying and discussing the challenges and prospects of the technology. Herein, we systematically analyze (1) the fundamental properties of NBs and their relevancy to water treatment processes, (2) recent advances in NB applications for various treatment processes beyond the lab scale, including over 20 pilot and full-scale case studies, (3) a preliminary economic consideration of NB-integrated treatment processes (the case of NB-flotation), and (4) existing controversies in NBs research and the outlook for future research. This review is organized with the aim to provide readers with a step-by-step understanding of the subject matter while highlighting key insights as well as knowledge gaps requiring research to advance the use of NBs in the wastewater treatment industry.

4.
Chemosphere ; 338: 139557, 2023 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-37478994

RESUMEN

The use of reverse osmosis (RO) for water reclamation has become an essential part of the water supply owing to the ever-increasing water demand and the utmost performance of the RO membranes. Despite the global RO implementation, its inferior rejection against low molecular weight contaminants of emerging concerns (CECs) (i.e., N-nitrosodimethylamine (NDMA)) and propensity to fouling remain bottle-neck thus affecting process robustness for water reuse. This study aims to enhance both the rejection and antifouling properties of the RO membrane. Herein for the first time, we report RO membrane modification using polydopamine nanospheres (PDAns) followed by aminated-graphene oxide (AGO) deposition as an effective approach to overcome these challenges. The modification of the RO membrane using PDAns-AGO resulted in 89.3 ± 2.7% rejection compared to the pristine RO membrane which demonstrated 69.2 ± 2.1% NDMA rejection. This significant improvement can be ascribed to the plugging and shielding of defective areas (formed during interfacial polymerization) of the polyamide layer through active PDAns and AGO layers and to the added sieving mechanism that arose through narrow channels of the AGO owing to its reduction. Moreover, the in-situ and non-destructive fouling monitoring using optical coherence tomography (OCT) revealed that the PDAns-AGO coating enhanced both the anti-scaling and anti-biofouling characteristics. The improved hydrophilicity and bactericidal effect together with roughness and surface charge suppression synergistically enhanced anti-fouling properties. This study provides a new direction for safe and cost-effective water reuse practices. The membrane with high selectivity against CECs such as NDMA has the potential to eliminate permeate staging using second pass RO and other advanced oxidation processes which are utilized as a tertiary treatment to make reclaimed water suitable for potable/non-potable application.


Asunto(s)
Incrustaciones Biológicas , Nanosferas , Purificación del Agua , Dimetilnitrosamina , Incrustaciones Biológicas/prevención & control , Ósmosis , Purificación del Agua/métodos , Membranas Artificiales , Agua
5.
Water Res ; 240: 120081, 2023 Jul 15.
Artículo en Inglés | MEDLINE | ID: mdl-37224667

RESUMEN

Pore wetting induced by surfactants and salt scaling is a major obstacle to the industrial application of membrane distillation (MD). Identifying the transition of wetting stages and achieving early monitoring of pore wetting are crucial for wetting control. Herein, we made a pioneering attempt to use ultrasonic time-domain reflectometry (UTDR) technique to non-invasively detect the pore wetting in a direct contact MD, and explain the UTDR waveform with the help of optical coherence tomography (OCT) imaging. The results showed that the water-vapor interface had a strong reflection to ultrasound (reflection coefficient = 0.9995), while the water-membrane and water-scaling layer interfaces showed relatively weak reflection. Therefore, UTDR could effectively detect the movement of water-vapor interface with the low interference from the signals generated by the membrane and scaling layer. For the surfactant-induced wetting, the occurrence of wetting could be successfully detected by the right-shift in phase and the reduction in amplitude of the UTDR waveform. Moreover, the wetting depth could be accurately calculated by the time of flight (ToF) and ultrasonic velocity. For scaling-induced wetting, the waveform slightly shifted to the left at the beginning due to the growth of scaling layer, then to the right because the left-shift was surpassed by the right-shift of the waveform caused by pore wetting. Both for the surfactant- and scaling-induced wetting, the variation of the UTDR waveform was sensitive to wetting dynamics, and the right-shift of phase and the reduction in amplitude of the waveform could act as early monitoring signals to the occurrence of wetting.


Asunto(s)
Ultrasonido , Purificación del Agua , Purificación del Agua/métodos , Membranas Artificiales , Agua , Vapor
6.
J Environ Manage ; 325(Pt A): 116370, 2023 Jan 01.
Artículo en Inglés | MEDLINE | ID: mdl-36308784

RESUMEN

Increasing urbanization and changes in climate have placed increasing stress on urban water supply systems. Policy makers have increasingly adopted alternative water supply sources, such as desalination and water reclamation to meet this challenge, however these technologies may increase the negative environmental impacts of the water supply system. These alternative sources are energy intensive, and more expensive to produce, which raises questions about their sustainability. In this study, a Life Cycle Assessment (LCA) and a economic portfolio choice model were used to determine the impacts of Hong Kong's long term water policy. The results of our study show that the current water policy will increase the carbon emissions of producing 1 m3 of freshwater by 11% to 1.65 kg CO2-Eq due to the addition of desalination. However, a fit-for-purpose water policy approach only increases emission by 4%, to 1.54 kg CO2-Eq, by instead relying on water reclamation to offset freshwater consumption. Impacts from increased energy consumption were mitigated by improved wastewater treatment, which reduced CH4 emissions. Although, ozone layer impacts increased due to higher NOx and N2O emissions, highlighting the need to consider emissions from wastewater treatment processes when evaluating water reclamation processes. Impacts to water prices were also minimized when reclaimed water was chosen over desalination, due to its lower unit production cost. By considering both cost and environmental impacts of such system level changes, decision makers can more accurately evaluate different water supply approaches for data-driven policymaking.


Asunto(s)
Dióxido de Carbono , Abastecimiento de Agua , Animales , Dióxido de Carbono/análisis , Hong Kong , Agua/análisis , Estadios del Ciclo de Vida
7.
Nat Commun ; 13(1): 3315, 2022 Jun 08.
Artículo en Inglés | MEDLINE | ID: mdl-35676294

RESUMEN

Owing to its 100% theoretical salt rejection capability, membrane distillation (MD) has emerged as a promising seawater desalination approach to address freshwater scarcity. Ideal MD requires high vapor permeate flux established by cross-membrane temperature gradient (∆T) and excellent membrane durability. However, it's difficult to maintain constant ∆T owing to inherent heat loss at feedwater side resulting from continuous water-to-vapor transition and prevent wetting transition-induced membrane fouling and scaling. Here, we develop a Ti3C2Tx MXene-engineered membrane that imparts efficient localized photothermal effect and strong water-repellency, achieving significant boost in freshwater production rate and stability. In addition to photothermal effect that circumvents heat loss, high electrically conductive Ti3C2Tx MXene also allows for self-assembly of uniform hierarchical polymeric nanospheres on its surface via electrostatic spraying, transforming intrinsic hydrophilicity into superhydrophobicity. This interfacial engineering renders energy-efficient and hypersaline-stable photothermal membrane distillation with a high water production rate under one sun irradiation.

9.
J Hazard Mater ; 425: 127916, 2022 Mar 05.
Artículo en Inglés | MEDLINE | ID: mdl-34986561

RESUMEN

Arsenic (As), a geogenic legacy pollutant can be present in environmental matrices (water, soil, plants, or animal) in two redox states (As(III) or As(V)). In the present study, charged mono- and di-amino functionalized triethoxy and methoxyorganosilane (TT1 and TT2- 1% and 5%) were impregnated with quartz sand particles for the treatment of As polluted water. Spectroscopic characterization of organosilane treated sand (STS) indicated the co-existence of minerals (Mg, Mn, Ti), amide, and amidoalkyl groups, which implies the suitability of silanized materials as a metal(loids) immobilization agent from water. Changes in peaks were observed after As sorption in Fourier thermal infrared and EDS images indicating the involvement of chemisorption. Batch sorption studies were performed with the optimized experimental parameters, where an increased removal (>20% for TT2-1% and >60% for TT1-1%) of As was observed with sorbate concentration (50 µg L-1), temp. (25 ± 2 ºC) and sorbent dosages (of 10 g L-1) at 120 min contact time. Among the different adsorbent dosages, 10 g L-1 of both TT1 and TT2 was selected as an optimum dosage (maximum adsorption capacity ≈ 2.91 µg g-1). The sorption model parameters suggested the possibility of chemisorption, charge/ion-dipole interaction for the removal of arsenate.


Asunto(s)
Arsénico , Agua Subterránea , Contaminantes Químicos del Agua , Purificación del Agua , Adsorción , Arsénico/análisis , Concentración de Iones de Hidrógeno , Cinética , Arena , Silanos , Contaminantes Químicos del Agua/análisis
10.
Environ Sci Technol ; 56(1): 535-545, 2022 01 04.
Artículo en Inglés | MEDLINE | ID: mdl-34935352

RESUMEN

Membrane distillation (MD) is a promising technology for the treatment of high salinity wastewater using a hydrophobic membrane; however, the occurrence of wetting due to surfactants in polluted or low surface tension liquid impedes MD application. Common monitoring approaches, such as conductivity and flux measurement, cannot explain the wetting phenomenon that occurs during the wetting process in detail. Recently, impedance spectroscopy has been proposed for early wetting detection, as it depends on the change of water/air composition in the membrane pores. An earlier and larger variation was observed with precise signal detection. In this study, we proposed an analytical approach to estimate the wetting front, which is the average feed intrusion distance, by the impedance value recorded in real-time operation. With this proposed approach, the wetting mechanism in the presence of a surfactant and the effect of pore size on a commercial polyvinylidene fluoride membrane could be quantified, which cannot be explained in detail using conductivity and flux measurements.


Asunto(s)
Destilación , Purificación del Agua , Espectroscopía Dieléctrica , Membranas Artificiales , Purificación del Agua/métodos , Humectabilidad
11.
Water Res ; 209: 117954, 2021 Dec 09.
Artículo en Inglés | MEDLINE | ID: mdl-34922105

RESUMEN

In this study, we report the use of nanobubbles (NBs) as a simple and facile approach to effectively delay scaling in membrane distillation (MD) during the treatment of highly saline feed (100 g L-1). Unlike conventional gas bubbling in MD for improving the hydrodynamic flow conditions in the feed channel, here we generated air NBs with an average size of 128.81 nm in the feed stream and examined their impact on membrane scaling inhibition during MD operation. Due to their small size, neutral buoyancy, and negative surface charge, NBs remain in suspension for a longer time (14 days), providing homogenous mixing throughout the entire feed water. The MD performance results revealed that severe membrane scaling happened during the DCMD treatment of high salinity brine in the absence of nanobubbles, which dramatically reduced the distillate flux to zero after 13 h. A one-time addition of air NBs in the saline feed significantly reduced salt precipitation and crystal deposition on the PVDF membrane surface, delayed the occurrence of flux decline, prevented membrane wetting, thereby prolonging the effective MD operating time. With similar feed concentration and operating conditions, only 63% flux decline after 98 h operation was recorded in nanobubble-assisted MD. Two key explanations were suggested for the delayed membrane scaling upon addition of air NBs in the MD feed: (1) NB-induced turbulent flow in the feed channel that increases the surface shear forces at the membrane surface, alleviating both temperature and concentration polarization effect, (2) electrostatic attractions of the counterions to the negatively charged NBs, which reduces the availability of these ions in the bulk feed for scale formation.

12.
Water Res ; 194: 116929, 2021 Apr 15.
Artículo en Inglés | MEDLINE | ID: mdl-33640755

RESUMEN

Forward osmosis is an energy efficient process that is capable of recovering high-quality water from secondary wastewater treatment. However, regeneration of the draw solution (DS) is a problem that needs to be addressed. Herein, we developed and optimized a one-step process that does not require additional treatment for the DS. This process, called pressure assisted-volume retarded osmosis (PA-VRO), utilizes naturally occurring pressure with the aid of a small inlet pressure (< 1 bar). Poly(styrenesulfonate) was employed as the DS, for its high solubility in water and large molecular size (∼70,000 Da). Accordingly, real wastewater was employed as the feed solution for 48 h to remove perfluorooctanoate (PFOA) and perfluorooctane sulfonate (PFOS) through PA-VRO. The rejection rates for PFOA/PFOS and poly(sodium-4-styrenesulfonate) (PSS) were observed to exceed 98%, after 24 h and 99%, after 48 h. Moreover, there were no traceable amounts of PFOA/PFOS in the DS, and hence the detected concentrations of PFOA and PFOS can be attributed to the residuals from the equipment. Therefore, this well-optimized PA-VRO process can be utilized for potable water production from treated wastewater.


Asunto(s)
Ácidos Alcanesulfónicos , Agua Potable , Fluorocarburos , Purificación del Agua , Caprilatos , Ósmosis , Aguas Residuales
13.
ACS Appl Mater Interfaces ; 13(3): 3762-3770, 2021 Jan 27.
Artículo en Inglés | MEDLINE | ID: mdl-33463155

RESUMEN

Photothermal desalination is a promising approach for seawater purification by harvesting solar energy. Titanium carbide (Ti3C2Tx MXene) membranes have been regarded as potential materials for photothermal desalination by virtue of their excellent light-to-heat conversion. However, achieving a well-balanced synergy between high evaporation rate and good salt resistance remains a significant challenge due to their limited solar absorption and inferior stability. Herein, we report a self-assembled flexible porphyrin-Ti3C2Tx MXene Janus membrane (Janus PMX membrane) for dual-functional enabled photothermal desalination. The self-assembly of porphyrin on MXene not only effectively creates a favorable hydrophobic surface but also simultaneously enables efficient solar utilization. The significant interactions and charge redistribution between MXene and porphyrin lead to a stable hydrophobic/hydrophilic Janus structure with synergistically enhanced photothermal conversion. As a result, the Janus PMX membrane demonstrates highly efficient water pumping, heat localization, vapor generation, and salt resistance during photothermal desalination. This work presents an effective and facile strategy toward advancing a well-performing MXene membrane for efficient seawater desalination.

14.
ACS Appl Mater Interfaces ; 13(3): 3805-3815, 2021 Jan 27.
Artículo en Inglés | MEDLINE | ID: mdl-33444505

RESUMEN

Herein, we demonstrate the desalination performance of a solar-driven membrane distillation (MD) process, where upon light illumination, a highly localized heating of plasmonic titanium nitride nanoparticles (TiN NPs) immobilized on a hydrophobic membrane provides the thermal driving force for the MD operation. The engineered TiN photothermal membrane induces vapor generation directly at the feed-membrane interface upon solar irradiation, thereby eliminating the need to heat the entire bulk feed water. The results indicate that the average vapor flux through the TiN photothermal membrane without any auxiliary feed heating was recorded as 1.01 L m-2 h-1, which corresponds to the solar-thermal efficiency of 66.7% under 1 sun solar irradiance. The superior performance of the photothermal MD process is attributed to the broadband optical absorption and excellent light-to-heat conversion properties of the plasmonic TiN NP layer, which enabled efficient interfacial water heating at the membrane surface and increased the net driving force for vapor transport. Results also reveal the high mechanical stability of the TiN photothermal coating layer during long-term photothermal MD operations. We believe that the TiN photothermal membranes fabricated using a relatively inexpensive and nontoxic material via the simple technique with high stability and photothermal conversion efficiency will provide a path forward for developing the solar-driven MD applications.

15.
Water Res ; 174: 115600, 2020 May 01.
Artículo en Inglés | MEDLINE | ID: mdl-32088385

RESUMEN

A hierarchically assembled superomniphobic membrane with three levels of reentrant structure was designed and fabricated to enable effective treatment of low surface tension, hypersaline oily wastewaters using direct contact membrane distillation (DCMD). The overall structure is a combination of macro corrugations obtained by surface imprinting, with the micro spherulites morphology achieved through the applied phase inversion method and nano patterns obtained by fluorinated Silica nanoparticles (SiNPs) coating. This resulted in a superomniphobic membrane surface with remarkable anti-wetting properties repelling both high surface tension water and low surface tension oils. Measurements of contact angle (CA) with DI water, an anionic surfactant, oil, and ethanol demonstrated a robust wetting resistance against low surface tension liquids showing both superhydrophobicity and superoleophobicity. CA values of 160.8 ± 2.3° and 154.3 ± 1.9° for water and oil were obtained, respectively. Calculations revealed a high liquid-vapor interface for the fabricated membrane with more than 89% of the water droplet contact area being with air pockets entrapped between adjacent SiNPs and only 11% come into contact with the solid membrane surface. Moreover, the high liquid-vapor interface imparts the membrane with high liquid repellency, self-cleaning and slippery effects, characterized by a minimum droplet-membrane interaction and complete water droplet bouncing on the surface within only 18 ms. When tested in DCMD with synthetic hypersaline oily wastewaters, the fabricated superomniphobic membrane demonstrated stable, non-wetting MD operation over 24 h, even at high concentrations of low surface tension 1.0 mM Sodium dodecyl sulfate and 400 ppm oil, potentially offering a sustainable option for treatment of low surface tension oily industrial wastewater.


Asunto(s)
Destilación , Purificación del Agua , Membranas Artificiales , Aceites , Tensión Superficial , Aguas Residuales
16.
Int J Hyg Environ Health ; 226: 113471, 2020 05.
Artículo en Inglés | MEDLINE | ID: mdl-32078924

RESUMEN

There is an increasing trend of developing various low-cost biogenic sorbents for the efficient and economical removal of noxious metals . Curry leaf powder (CLP), a promising non-toxic biosorbent containing several bioactive compounds was prepared by the pulverization of the dried leaves for the effective removal of Lead (Pb) and Cadmium (Cd). Various batch sorption experiments were carried out under constant temperature (25 °C), different pH (4.5-10.5), initial concentrations (50-200 mg L-1), adsorbent dosages (0.10-0.40 g) and contact times (0-60 min) to understand the optimum experimental conditions and simultaneously evaluate the adsorption isotherms and removal kinetics of CLP. Adsorption equilibrium was established in less than an hour interval (50 min). The pseudo-equilibrium process was best described by the pseudo-second-order kinetic (R2 ≥ 0.99), Freundlich and Langmuir isotherm model (R2 ≥ 0.94). The removal rate of Pb and Cd gradually increased (15.7 and 12.7 mg g-1 for Pb and Cd) at 100 mg L-1 of initial concentration till 60 min of contact period in a single contaminant system, the effect was non-significant for multiple adsorbent dosage systems (p > 0.05; t-test) though. The regeneration potential of the exhausted biosorbent was excellent upto 5 cycles with the better efficiency observed for Pb. The obtained results explicitly validated the probable utilization of CLP as a promising green adsorbent for metal removal . Future study may highlight the decontamination aspects of emerging contaminants with such green bio sorbents in large scale as well as mimicing the stomach conditions.


Asunto(s)
Cadmio/química , Plomo/química , Murraya , Preparaciones de Plantas/química , Polifenoles/química , Polvos/química , Contaminantes Químicos del Agua/química , Adsorción , Análisis Costo-Beneficio , Tecnología Química Verde/economía , Cinética , Hojas de la Planta , Reciclaje , Purificación del Agua/economía , Purificación del Agua/métodos
17.
Water Res ; 165: 114982, 2019 Nov 15.
Artículo en Inglés | MEDLINE | ID: mdl-31473356

RESUMEN

In this study, an omniphobic membrane was fabricated by electrospraying fluorinated zinc oxide (ZnO) nanoparticles (NPs) mixed with polyvinylidene fluoride-co-hexafluoropropylene (PVDF-HFP) on the surface of an organosilane functionalized polyvinylidene difluoride (PVDF) membrane. Our results revealed that the functionalized ZnO NPs membrane exhibited a rough hierarchical re-entrant morphology with low surface energy which allowed it to achieve high omniphobic characteristics. It was observed that the addition of 30% ZnO (w/w of PVDF-HFP) was found to be optimal and imparted a high repulsive characteristic. The optimized PVDF/ZnO(30)/FAS/PVDF-HFP referred as cPFP-30Z membrane exhibited a high contact angle values of 159.0 ±â€¯3.1°, 129.6 ±â€¯2.2°, 130.4 ±â€¯4.1° and 126.1 ±â€¯1.2° for water, sodium dodecyl sulfate (SDS) saline solution (0.3 mM SDS in 3.5% NaCl), ethanol, and vegetable oil, respectively. The low surface energy and high surface roughness (Ra) of optimised membrane was assessed as 0.78 ±â€¯0.14 mN m-1 and 1.37 µm, respectively. Additionally, in contrast with the commercial PVDF membrane, the cPFP-30Z membrane exhibited superior anti-wetting/anti-fouling characteristics and high salt rejection performance (>99%) when operated with a saline oil solution (0.015 v/v) and SDS (0.4 mM) feed solutions.


Asunto(s)
Nanopartículas , Purificación del Agua , Óxido de Zinc , Destilación , Membranas Artificiales , Polivinilos , Agua de Mar , Tensión Superficial
18.
Environ Sci Technol ; 53(9): 4948-4958, 2019 05 07.
Artículo en Inglés | MEDLINE | ID: mdl-30978006

RESUMEN

Electrospun nanofiber membranes (ENMs) have garnered increasing interest due to their controllable nanofiber structure and high void volume fraction properties in membrane distillation (MD). However, MD technology still faces limitations mainly due to low permeate flux and membrane wetting for feeds containing low surface tension compounds. Perfluorinated superhydrophobic membranes could be an alternative, but it has negative environmental impacts. Therefore, other low surface energy materials such as silica aerogel and polydimethylsiloxane (PDMS) have great relevancy in ENMs fabrication. Herein, we have reported the high flux and nonwettability of ENMs fabricated by electrospraying aerogel/polydimethylsiloxane (PDMS)/polyvinylidene fluoride (PVDF) over electrospinning polyvinylidene fluoride- co-hexafluoropropylene (PVDF-HFP) membrane (E-PH). Among various concentrations of aerogel, the 30% aerogel (E-M3-A30) dual layer membrane achieved highest superhydrophobicity (∼170° water contact angle), liquid entry pressure (LEP) of 129.5 ± 3.4 kPa, short water droplet bouncing performance (11.6 ms), low surface energy (4.18 ± 0.27 mN m-1) and high surface roughness ( Ra: 5.04 µm) with re-entrant structure. It also demonstrated nonwetting MD performance over a continuous 7 days operation of saline water (3.5% of NaCl), high antiwetting with harsh saline water containing 0.5 mM sodium dodecyl sulfate (SDS, 28.9 mN m-1), synthetic algal organic matter (AOM).


Asunto(s)
Nanofibras , Purificación del Agua , Dimetilpolisiloxanos , Destilación , Interacciones Hidrofóbicas e Hidrofílicas , Membranas Artificiales
19.
J Environ Manage ; 240: 343-351, 2019 Jun 15.
Artículo en Inglés | MEDLINE | ID: mdl-30953987

RESUMEN

"Smart Food Waste Recycling Bin" (S-FRB) systems have recently been developed to facilitate the transformation of food waste into an end-product suitable for use as an energy resource following circular economy principles. This decentralized waste decomposition system utilizes fermentative microorganisms for the treatment of organic food waste and has emerged as a possible solution for coping with both landfill capacity and greenhouse gas emissions issues. This paper utilizes Life Cycle Assessment (LCA) to determine the environmental impacts associated with this S-FRB technology and identify environmental hotspots to reduce these impacts. In this paper, we have conducted an on-site pilot-scale study for 2 months at a canteen located at the City University of Hong Kong, which resulted in a 90% reduction in the mass of food waste treated in the S-FRB system. Based on this pilot-scale study hypothetical scenarios were developed to determine potential environmental impacts potential scaled-up deployments of the S-FRB instrument based on varied assumptions. Examination of the LCAs of these different scenarios demonstrated the potential for further reduction in CO2 equivalent emissions during food waste treatment. Cumulative Energy Demand (CED) and Energy Return on Investment (EROI) were also investigated to understand the energy balance energy of the S-FRB technology. Finally, using current waste treatment methods in Hong Kong as a benchmark, the environmental impacts of the S-FRB are compared with the conventional food waste treatment approaches such as landfilling and organic waste treatment facilities (OWTF).


Asunto(s)
Eliminación de Residuos , Administración de Residuos , Fermentación , Hong Kong , Reciclaje , Instalaciones de Eliminación de Residuos
20.
J Environ Manage ; 234: 290-296, 2019 Mar 15.
Artículo en Inglés | MEDLINE | ID: mdl-30634121

RESUMEN

Effective treatment of food waste is inherently difficult due to several factors, including its heterogeneous composition, high moisture content, and low heating value. To address these issues, this study aims to convert food waste into an energy resource using naturally occurring fermentative microorganisms embedded in wooden biochips (bio-catalysis), utilizing a "Smart Food Waste Recycling Bin" (S-FRB) system. High-throughput 16S rRNA gene sequencing analysis identified the major aerobic and facultatively anaerobic bacteria with alpha-diversity in terms of the Phylogenetic Diversity index ranging from 40.8 (initial stage) to 24.5 (mature stage), which indicates the microbial communities are relatively homogeneous and effective for use in the S-FBR. Operational results indicated that the organic content of food waste traded in the system increased from 53% up to 72% in the final end-product and achieved a mass reduction rate of approximately 80%. The heating value of the end-product, which was 3300 kcal/kg waste when measured by the differential scanning calorimeter (DSC) method, confirmed its high potential as a biofuel. Overall, the S-FRB system presents a practical approach for food waste treatment that solves the putrescible waste problem and maximizes utility through resource circulation.


Asunto(s)
Alimentos , Reciclaje , Bacterias Anaerobias , Filogenia , ARN Ribosómico 16S
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...