Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 16 de 16
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
ACS Appl Mater Interfaces ; 16(26): 34419-34427, 2024 Jul 03.
Artículo en Inglés | MEDLINE | ID: mdl-38886188

RESUMEN

Although laminate structures are widely used in electrostatic capacitors, unavoidable heterogeneous interfaces often deteriorate the dielectric properties by impeding film crystallization. In this study, a TiO2/ZrO2/TiO2 (TZT) laminate structure, where upper-TiO2 deposited on the heterogeneous interface was crystallized by plasma-assisted atomic layer annealing (ALA), was investigated. ALA effectively induced the phase transition of the upper-TiO2 from the amorphous or anatase phase to the rutile phase, leading to an increase in the dielectric constant, whereas the ZrO2 blocking interlayer maintained the amorphous phase owing to the extremely localized effect of ALA. Consequently, through the layer-by-layer phase control of ALA, the dielectric constant of the upper-TiO2 was enhanced by 25% by applying ALA, leading to an increase in a capacitance density of 27% of the TZT capacitor, whereas a low leakage current density of ∼10-8 A/cm2 was maintained (at 1 V). In addition, the TZT capacitor on three-dimensional structures (aspect ratio of 5:1) shows a high capacitance density of up to 461 nF/mm2 owing to ALA.

2.
Biosensors (Basel) ; 14(2)2024 Feb 19.
Artículo en Inglés | MEDLINE | ID: mdl-38392028

RESUMEN

Reflection-type photoplethysmography (PPG) pulse sensors used in wearable smart watches, true wireless stereo, etc., have been recently considered a key component for monitoring biological signals such as heart rate, SPO3, and blood pressure. Typically, the optical front end (OFE) of these PPG sensors is heterogeneously configured and packaged with light sources and receiver chips. In this paper, a novel quarter-annulus photodetector (NQAPD) with identical inner and outer radii of curvature has been developed using a plasma dicing process to realize a ring-type OFE receiver, which maximizes manufacturing efficiency and increases the detector collection area by 36.7% compared to the rectangular PD. The fabricated NQAPD exhibits a high quantum efficiency of over 90% in the wavelength of 500 nm to 740 nm and the highest quantum efficiency of 95% with a responsivity of 0.41 A/W at the wavelength of 530 nm. Also, the NQAPD is shown to increase the SNR of the PPG signal by 5 to 7.6 dB compared to the eight rectangular PDs. Thus, reflective PPG sensors constructed with NQAPD can be applied to various wearable devices requiring low power consumption, high performance, and cost-effectiveness.


Asunto(s)
Fotopletismografía , Dispositivos Electrónicos Vestibles , Frecuencia Cardíaca/fisiología , Extremidad Superior , Presión Sanguínea , Procesamiento de Señales Asistido por Computador
3.
Small Methods ; 8(1): e2300790, 2024 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-37749956

RESUMEN

Employing porous structures is essential in high-performance electrochemical energy devices. However, obtaining uniform functional coatings on high-tortuosity structures can be challenging, even with specialized processes such as atomic layer deposition (ALD). Herein, a novel method for achieving a porous composite electrode for solid oxide fuel cells by coating La0.6 Sr0.4 Co0.2 Fe0.8 O3 -δ (LSCF) powders with ZrO2 using a powder ALD process is presented. Unlike conventional ALD, powder ALD can be used to fabricate extremely uniform coatings on porous electrodes with a thickness of tens of micrometers. The powder ALD ZrO2 coating is found to effectively suppress chemical degradation of the LSCF electrodes. The cell with the powder ALD coated cathode shows a 2.2 times higher maximum power density and 60% lower thermal degradation in activation resistance than the bare LSCF cathode cell at 700-750 °C. The result demonstrated in this study is expected to have significant implications for high-performance and durable electrodes in energy conversion/storage devices.

4.
ACS Catal ; 13(16): 11172-11181, 2023 Aug 18.
Artículo en Inglés | MEDLINE | ID: mdl-37614520

RESUMEN

The oxygen evolution reaction (OER) is a significant contributor to the cell overpotential in solid oxide electrolyzer cells (SOECs). Although noble metals such as Ru and Ir have been utilized as OER catalysts, their widespread application in SOECs is hindered by their high cost and limited availability. In this study, we present a highly effective approach to enhance air electrode performance and durability by depositing an ultrathin layer of metallic Ru, as thin as ∼7.5 Å, onto (La0.6Sr0.4)0.95Co0.2Fe0.8O3-δ (LSCF) using plasma-enhanced atomic layer deposition (PEALD). Our study suggests that the emergence of a perovskite, SrRuO3, resulting from the reaction between PEALD-based Ru and surface-segregated Sr species, plays a crucial role in suppressing Sr segregation and maintaining favorable oxygen desorption kinetics, which ultimately improves the OER durability. Further, the PEALD Ru coating on LSCF also reduces the resistance to the oxygen reduction reaction (ORR), highlighting the bifunctional electrocatalytic activities for reversible fuel cells. When the LSCF electrode of a test cell is decorated with ∼7.5 Å of the Ru overcoat, a current density of 656 mA cm-2 at 1.3 V in electrolysis mode and a peak power density of 803 mW cm-2 in fuel cell mode are demonstrated at 700 °C, corresponding to an enhancement of 49.1 and 31.9%, respectively, compared to the pristine cell.

5.
ACS Appl Mater Interfaces ; 11(50): 46651-46657, 2019 Dec 18.
Artículo en Inglés | MEDLINE | ID: mdl-31697463

RESUMEN

Obtaining a catalyst with high activity and thermal stability is essential for high-performance energy conversion devices operating at an elevated temperature. Herein, the design and fabrication of a heterogeneous catalyst with an ultrathin CeO2 overlayer via atomic layer deposition (ALD) on Pt electrodes for low-temperature solid oxide fuel cells (LT-SOFCs) is reported. The cell with a CeO2-overcoated (five ALD cycles) Pt cathode shows lower activation resistance by 50% after a 10 h operation and higher thermal stability by a factor of 2 compared with the cell with a Pt-only cathode, which is known to be the best single catalyst at 450 °C. Eventually, a thin-film SOFC with a highly active and stable CeO2-overcoated cathode based on an anodized aluminum oxide (AAO) substrate demonstrates a high peak power density of 800 mW cm-2 at 500 °C, which is the highest performance ever reported for an AAO-based SOFC at this temperature.

6.
Nanotechnology ; 29(19): 195602, 2018 May 11.
Artículo en Inglés | MEDLINE | ID: mdl-29461257

RESUMEN

Atomic layer-deposited (ALD) dielectric films on graphene usually show noncontinuous and rough morphology owing to the inert surface of graphene. Here, we demonstrate the deposition of thin and uniform ALD ZrO2 films with no seed layer on chemical vapor-deposited graphene functionalized by atmospheric oxygen plasma treatment. Transmission electron microscopy showed that the ALD ZrO2 films were highly crystalline, despite a low ALD temperature of 150 °C. The ALD ZrO2 film served as an effective passivation layer for graphene, which was shown by negative shifts in the Dirac voltage and the enhanced air stability of graphene field-effect transistors after ALD of ZrO2. The ALD ZrO2 film on the functionalized graphene may find use in flexible graphene electronics and biosensors owing to its low process temperature and its capacity to improve device performance and stability.

7.
ACS Appl Mater Interfaces ; 8(44): 30090-30098, 2016 Nov 09.
Artículo en Inglés | MEDLINE | ID: mdl-27739300

RESUMEN

Nickel and ruthenium bimetallic catalysts were heterogeneously synthesized via atomic layer deposition (ALD) for use as the anode of direct methanol solid oxide fuel cells (DMSOFCs) operating in a low-temperature range. The presence of highly dispersed ALD Ru islands over a porous Ni mesh was confirmed, and the Ni/ALD Ru anode microstructure was observed. Fuel cell tests were conducted using Ni-only and Ni/ALD Ru anodes with approximately 350 µm thick gadolinium-doped ceria electrolytes and platinum cathodes. The performance of fuel cells was assessed using pure methanol at operating temperatures of 300-400 °C. Micromorphological changes of the anode after cell operation were investigated, and the content of adsorbed carbon on the anode side of the operated samples was measured. The difference in the maximum power density between samples utilizing Ni/ALD Ru and Pt/ALD Ru, the latter being the best catalyst for direct methanol fuel cells, was observed to be less than 7% at 300 °C and 30% at 350 °C. The improved electrochemical activity of the Ni/ALD Ru anode compared to that of the Ni-only anode, along with the reduction of the number of catalytically active sites due to agglomeration of Ni and carbon formation on the Ni surface as compared to Pt, explains this decent performance.

8.
Nanotechnology ; 27(41): 415402, 2016 Oct 14.
Artículo en Inglés | MEDLINE | ID: mdl-27595193

RESUMEN

Yttria-stabilized zirconia (YSZ) thin film electrolyte deposited by plasma enhanced atomic layer deposition (PEALD) was investigated. PEALD YSZ-based bi-layered thin film electrolyte was employed for thin film solid oxide fuel cells on nanoporous anodic aluminum oxide substrates, whose electrochemical performance was compared to the cell with sputtered YSZ-based electrolyte. The cell with PEALD YSZ electrolyte showed higher open circuit voltage (OCV) of 1.0 V and peak power density of 182 mW cm(-2) at 450 °C compared to the one with sputtered YSZ electrolyte(0.88 V(OCV), 70 mW cm(-2)(peak power density)). High OCV and high power density of the cell with PEALD YSZ-based electrolyte is due to the reduction in ohmic and activation losses as well as the gas and electrical current tightness.

9.
Beilstein J Nanotechnol ; 6: 1805-10, 2015.
Artículo en Inglés | MEDLINE | ID: mdl-26425432

RESUMEN

Solid oxide fuel cells with atomic layer-deposited thin film electrolytes supported on anodic aluminum oxide (AAO) are electrochemically characterized with varying thickness of bottom electrode catalyst (BEC); BECs which are 0.5 and 4 times thicker than the size of AAO pores are tested. The thicker BEC ensures far more active mass transport on the BEC side and resultantly the thicker BEC cell generates ≈11 times higher peak power density than the thinner BEC cell at 500 °C.

10.
ACS Appl Mater Interfaces ; 6(13): 10656-60, 2014 Jul 09.
Artículo en Inglés | MEDLINE | ID: mdl-24946008

RESUMEN

High-k, low leakage thin films are crucial components for dynamic random access memory (DRAM) capacitors with high storage density and a long storage lifetime. In this work, we demonstrate a method to increase the dielectric constant and decrease the leakage current density of atomic layer deposited BaTiO3 thin films at low process temperature (250 °C) using postdeposition remote oxygen plasma treatment. The dielectric constant increased from 51 (as-deposited) to 122 (plasma-treated), and the leakage current density decreased by 1 order of magnitude. We ascribe such improvements to the crystallization and densification of the film induced by high-energy ion bombardments on the film surface during the plasma treatment. Plasma-induced crystallization presented in this work may have an immediate impact on fabricating and manufacturing DRAM capacitors due to its simplicity and compatibility with industrial standard thin film processes.

11.
ACS Nano ; 8(1): 340-51, 2014 Jan 28.
Artículo en Inglés | MEDLINE | ID: mdl-24266776

RESUMEN

This report presents a demonstration and characterization of a nanotubular array of solid oxide fuel cells (SOFCs) made of one-end-closed hollow tube Ni/yttria-stabilized zirconia/Pt membrane electrode assemblies (MEAs). The tubular MEAs are nominally ∼5 µm long and have <500 nm outside diameter with total MEA thickness of nearly 50 nm. Open circuit voltages up to 660 mV (vs air) and power densities up to 1.3 µW cm(-2) were measured at 550 °C using H2 as fuel. The paper also introduces a fabrication methodology primarily based on a template process involving atomic layer deposition and electrodeposition for building the nanotubular MEA architecture as an important step toward achieving high surface area ultrathin SOFCs operating in the intermediate to low-temperature regime. A fabricated nanotubular SOFC theoretically attains a 20-fold increase in the effective surface, while projections indicate the possibility of achieving up to 40-fold.

12.
Sci Rep ; 3: 2680, 2013.
Artículo en Inglés | MEDLINE | ID: mdl-24042150

RESUMEN

This study presents atomic scale characterization of grain boundary defect structure in a functional oxide with implications for a wide range of electrochemical and electronic behavior. Indeed, grain boundary engineering can alter transport and kinetic properties by several orders of magnitude. Here we report experimental observation and determination of oxide-ion vacancy concentration near the Σ13 (510)/[001] symmetric tilt grain-boundary of YSZ bicrystal using aberration-corrected TEM operated under negative spherical aberration coefficient imaging condition. We show significant oxygen deficiency due to segregation of oxide-ion vacancies near the grain-boundary core with half-width < 0.6 nm. Electron energy loss spectroscopy measurements with scanning TEM indicated increased oxide-ion vacancy concentration at the grain boundary core. Oxide-ion density distribution near a grain boundary simulated by molecular dynamics corroborated well with experimental results. Such column-by-column quantification of defect concentration in functional materials can provide new insights that may lead to engineered grain boundaries designed for specific functionalities.

13.
Nano Lett ; 13(9): 4551-5, 2013 Sep 11.
Artículo en Inglés | MEDLINE | ID: mdl-23977845

RESUMEN

Obtaining high power density at low operating temperatures has been an ongoing challenge in solid oxide fuel cells (SOFC), which are efficient engines to generate electrical energy from fuels. Here we report successful demonstration of a thin-film three-dimensional (3-D) SOFC architecture achieving a peak power density of 1.3 W/cm(2) obtained at 450 °C. This is made possible by nanostructuring of the ultrathin (60 nm) electrolyte interposed with a nanogranular catalytic interlayer at the cathode/electrolyte interface. We attribute the superior cell performance to significant reduction in both the ohmic and the polarization losses due to the combined effects of employing an ultrathin film electrolyte, enhancement of effective area by 3-D architecture, and superior catalytic activity by the ceria-based interlayer at the cathode. These insights will help design high-efficiency SOFCs that operate at low temperatures with power densities that are of practical significance.


Asunto(s)
Suministros de Energía Eléctrica , Nanoestructuras/química , Óxidos/química , Catálisis , Electrodos , Electrólitos/química
14.
Phys Chem Chem Phys ; 15(20): 7520-5, 2013 May 28.
Artículo en Inglés | MEDLINE | ID: mdl-23579635

RESUMEN

Because noble metal catalysts (e.g. Pt) are one of the main contributors to low-temperature (<500 °C) fuel cell costs, significant efforts have been made to lower the noble metal loading in constructing fuel cell electrodes. In this work, ultra-thin (∼10 nm) platinum (Pt) cathode/catalyst layers were patterned by atomic layer deposition (ALD) and tested as catalytic electrodes (cathode) for low-temperature solid oxide fuel cells. We found that 180 cycles or approximately 10 nm of ALD Pt, with a Pt loading of only 0.02 mg cm(-2), were sufficient for the purpose of a catalytic cathode. Furthermore, this ALD Pt resulted in fuel cell performance comparable to that achieved by 80 nm-thick sputtered Pt. Transmission electron microscope (TEM) observations revealed the optimized number of ALD cycles of Pt for the catalytic electrode, which renders both contiguity and high triple-phase boundary (TPB) density. This result suggests the ability to significantly reduce Pt loading, thereby reducing the cost, and furthermore, can be easily applied to high performance fuel cells with complex 3-D structures.

15.
J Phys Chem Lett ; 4(7): 1156-60, 2013 Apr 04.
Artículo en Inglés | MEDLINE | ID: mdl-26282035

RESUMEN

We present atomic-scale imaging of oxygen columns and show quantitative analysis on the occupancy of the columns in yttria-stabilized zirconia (YSZ) using aberration-corrected TEM operated under the negative Cs condition. Also, individual contributions both from oxygen column occupancy and the static displacement of oxygen atoms due to occupancy change to the observed column intensities of TEM images were systematically investigated using HRTEM simulation. We found that oxygen column intensity is governed primarily by column occupancy rather than by static displacement of oxygen atoms. Utilizing the aberration-corrected TEM capability and HRTEM simulation results, we experimentally verified that oxygen vacancies segregate near the single grain boundary of a YSZ bicrystal. The methodology and the high spatial resolution characterization tool employed in the present study provide insights into the distribution of oxygen vacancies in the bulk as well as near grain boundaries and pave the way for further investigation and atomic-scale analysis in other important oxide materials.

16.
ACS Appl Mater Interfaces ; 4(12): 6790-5, 2012 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-23151148

RESUMEN

Enhancing the density of catalytic sites is crucial for improving the performance of energy conversion devices. This work demonstrates the kinetic role of 2 nm thin YSZ/Pt cermet layers on enhancing the oxygen reduction kinetics for low temperature solid oxide fuel cells. Cermet layers were deposited between the porous Pt cathode and the dense YSZ electrolyte wafer using atomic layer deposition (ALD). Not only the catalytic role of the cermet layer itself but the mixing effect in the cermet was explored. For cells with unmixed and fully mixed cermet interlayers, the maximum power density was enhanced by a factor of 1.5 and 1.8 at 400 °C, and by 2.3 and 2.7 at 450 °C, respectively, when compared to control cells with no cermet interlayer. The observed enhancement in cell performance is believed to be due to the increased triple phase boundary (TPB) density in the cermet interlayer. We also believe that the sustained kinetics for the fully mixed cermet layer sample stems from better thermal stability of Pt islands separated by the ALD YSZ matrix, which helped to maintain the high-density TPBs even at elevated temperature.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA