Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 6 de 6
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Cancer Drug Resist ; 7: 16, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-38835342

RESUMEN

Aim: Glioma accounts for 81% of all cancers of the nervous system cancers and presents one of the most drug-resistant malignancies, resulting in a relatively high mortality rate. Despite extensive efforts, the complete treatment options for glioma remain elusive. The effect of isocucurbitacin B (isocuB), a natural compound extracted from melon pedicels, on glioma has not been investigated. This study aims to investigate the inhibitory effect of isocuB on glioma and elucidate its underlying mechanisms, with the objective of developing it as a potential therapeutic agent for glioma. Methods: We used network pharmacology and bioinformatics analysis to predict potential targets and associated pathways of isocuB in glioma. Subsequently, the inhibitory effect of isocuB on glioma and its related mechanisms were assessed through Counting Kit-8 (CCK-8), wound healing, transwell, Western blot (WB), reverse transcription-quantitative polymerase chain reaction (RT-qPCR), and other in vitro experiments, alongside tumor formation experiments in nude mice. Results: Based on this investigation, it suggested that isocuB might inhibit the growth of gliomas through the PI3K-AKT and MAPK pathways. Additionally, we proposed that isocuB may enhance glioma drug sensitivity to temozolomide (TMZ) via modulation of hsa-mir-1286a. The CCK-8 assay revealed that isocuB exhibited inhibitory effects on U251 and U87 proliferation and outperformed TMZ. Wound healing and transwell experiments showed that isocuB inhibited the invasion and migration of U251 cells by suppressing the activity of MMP-2/9, N-cadherin, and Vimentin. The TdT-mediated dUTP-biotin nick end labeling (TUNEL) and flow cytometry (FCM) assays revealed that isocuB induced cell apoptosis through inhibition of BCL-2. Subsequently, we conducted RT-qPCR and WB experiments, which revealed that PI3K/AKT and MAPK pathways might be involved in the mechanism of the inhibition isocuB on glioma. Additionally, isocuB promoted the sensitivity of glioma U251 to TMZ by inhibiting hsa-mir-1286a. Furthermore, we constructed TMZ-resistant U251 strains and demonstrated effective inhibition by isocuB against these resistant strains. Finally, we confirmed that isocuB can inhibit tumor growth in vivo through experiments on tumors in nude mice. Conclusion: IsocuB may protect against glioma by acting on the PI3K/AKT and MAPK pathways and promote the sensitivity of glioma U251 to TMZ by inhibiting hsa-mir-1286a.

2.
Transl Oncol ; 45: 101964, 2024 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-38657441

RESUMEN

BACKGROUND: Although there is evidence of the association between RA and NSCLC, little is known about their interaction mechanisms. The aim of this study is to identify potential hub genes and biological mechanism in RA and NSCLC via integrated bioinformatics analysis. METHODS: The gene expression datasets of RA and NSCLC were downloaded to discover and validate hub genes. After identifying DEGs, we performed enrichment analysis, PPI network construction and module analysis, selection and validation of hub genes. Moreover, we selected the hub gene PTPRC for expression and prognosis analysis, immune analysis, mutation and methylation analysis in NSCLC. Finally, we performed real-time PCR, colony formation assay, wound healing assay, transwell invasion assay, sphere formation assay and western blotting to validate the role of PTPRC in A549 cells. RESULTS: We obtained 320 DEGs for subsequent analysis. Enrichment results showed that the DEGs were mainly involved in Th1, Th2 and Th17 cell differentiation. In addition, four hub genes, BIRC5, PTPRC, PLEK, and FYN, were identified after selection and validation. These hub genes were subsequently shown to be closely associated with immune cells and related pathways. In NSCLC, PTPRC was downregulated, positively correlated with immune infiltration and immune cells. Experiments showed that PTPRC could promote the proliferation, migration and invasion, and the ability to form spheroids of A549 cells. In addition, PTPRC could regulate the increased expression of CD45, ß-catenin, c-Myc and LEF1 proteins. CONCLUSIONS: This study explored the hub genes and related mechanisms of RA and NSCLC, demonstrated the central role of the inflammatory response and the adaptive immune system, and identified PTPRC as an immune-related biomarker and potential therapeutic target for RA and NSCLC patients. In addition, PTPRC can significantly promote the proliferation, migration and invasion of A549 cells, and its mechanism may be to promote the EMT process by regulating the Wnt signaling pathway and promote cell stemness, which in turn has a promoting effect on A549 cells.

3.
Front Oncol ; 14: 1273841, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-38304870

RESUMEN

Gliomas are prevalent malignant tumors in adults, which can be categorized as either localized or diffuse gliomas. Glioblastoma is the most aggressive and deadliest form of glioma. Currently, there is no complete cure, and the median survival time is less than one year. The main mechanism of regulated cell death involves organisms coordinating the elimination of damaged cells at risk of tumor transformation or cells hijacked by microorganisms for pathogen replication. This process includes apoptosis, necroptosis, autophagy, ferroptosis, pyroptosis, necrosis, parthanayosis, entosis, lysosome-dependent death, NETosis, oxiptosis, alkaliptosis, and disulfidaptosis. The main goal of clinical oncology is to develop therapies that promote the effective elimination of cancer cells by regulating cell death are the main goal of clinical oncology. Recently, scientists have utilized pertinent regulatory factors and natural small-molecule compounds to induce regulated cell death for the treatment of gliomas. By analyzing the PubMed and Web of Science databases, this paper reviews the research progress on the regulation of cell death and the role of natural small-molecule compounds in glioma. The aim is to provide help for the treatment of glioblastoma.

4.
Front Pharmacol ; 13: 961012, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-36110545

RESUMEN

Safety has always been an important issue affecting the development of traditional Chinese medicine industry, especially for toxic medicinal materials, the establishment of risk prevention and control measures for toxic herbs is of great significance to improving the use of traditional Chinese medicine in clinical. Fuzi is a kind of traditional Chinese medicine and its toxicity has become the most important obstacle of limit in clinical using. In this paper, network pharmacology and molecular docking technology were used to analyze the main toxic components of Fuzi, the key targets and the mechanism of neurotoxicity. We carried out CCK-8 and WB assays, and detected LDH release and SDH activity. It was verified that aconitine caused neurotoxicity through a variety of pathways, including MAPK signaling pathway, pathways related to Akt protein, destruction of cell membrane integrity, damage of mitochondrial function affecting energy metabolism and apoptosis. What's more, this study confirmed that aconitine could produce neurotoxicity by promoting apoptosis of hippocampus neuron and decreasing its quantity through Nissl Staining and TUNEL assay. This paper found and confirmed multiple targets and various pathways causing neurotoxicity of Fuzi, in order to provide reference for clinical application and related research.

5.
Front Oncol ; 12: 828438, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-35311116

RESUMEN

Breast cancer has an extremely high incidence in women, and its morbidity and mortality rank first among female tumors. With the increasing development of molecular biology and genomics, molecular targeted therapy has become one of the most active areas in breast cancer treatment research and has also achieved remarkable achievements. However, molecular targeted therapy is mainly aimed at HER2-positive breast cancer and has not yet achieved satisfactory curative effect on HER2-negative breast cancer. This article describes the potential targets that may be used for breast cancer treatment from the aspects of PI3K/AKT signaling pathway, DDR, angiogenesis, the cell cycle, breast cancer stem cells, etc., and explores possible inhibitors for the treatment of HER2-negative breast cancer, such as PI3K inhibitors, AKT inhibitors and m-TOR inhibitors that inhibit the PI3K/AKT signaling pathway, small molecule tyrosine kinase inhibitors that restrain angiogenesis, CDK inhibitors, aurora kinase inhibitors and HDAC inhibitors that block cell cycle, as well as the drugs targeting breast cancer stem cells which have been a hit, aiming to provide a new idea and strategy for the treatment of HER2-negative breast cancer.

6.
Int J Mol Sci ; 22(17)2021 Sep 06.
Artículo en Inglés | MEDLINE | ID: mdl-34502549

RESUMEN

Breast cancer has an extremely high incidence in women, and its morbidity and mortality rank first among female tumors. With the increasing development of medicine today, the clinical application of neoadjuvant chemotherapy has brought new hope to the treatment of breast cancer. Although the efficacy of neoadjuvant chemotherapy has been confirmed, drug resistance is one of the main reasons for its treatment failure, contributing to the difficulty in the treatment of breast cancer. This article focuses on multiple mechanisms of action and expounds a series of recent research advances that mediate drug resistance in breast cancer cells. Drug metabolizing enzymes can mediate a catalytic reaction to inactivate chemotherapeutic drugs and develop drug resistance. The drug efflux system can reduce the drug concentration in breast cancer cells. The combination of glutathione detoxification system and platinum drugs can cause breast cancer cells to be insensitive to drugs. Changes in drug targets have led to poorer efficacy of HER2 receptor inhibitors. Moreover, autophagy, epithelial-mesenchymal transition, and tumor microenvironment can all contribute to the development of resistance in breast cancer cells. Based on the relevant research on the existing drug resistance mechanism, the current treatment plan for reversing the resistance of breast cancer to neoadjuvant chemotherapy is explored, and the potential drug targets are analyzed, aiming to provide a new idea and strategy to reverse the resistance of neoadjuvant chemotherapy drugs in breast cancer.


Asunto(s)
Antineoplásicos/farmacología , Investigación Biomédica/métodos , Neoplasias de la Mama/tratamiento farmacológico , Resistencia a Antineoplásicos/efectos de los fármacos , Antineoplásicos/uso terapéutico , Protocolos de Quimioterapia Combinada Antineoplásica/uso terapéutico , Investigación Biomédica/tendencias , Neoplasias de la Mama/metabolismo , Neoplasias de la Mama/patología , Quimioterapia Adyuvante/métodos , Transición Epitelial-Mesenquimal/efectos de los fármacos , Femenino , Humanos , Terapia Neoadyuvante/métodos
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA