Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Food Chem ; 445: 138790, 2024 Jul 01.
Artículo en Inglés | MEDLINE | ID: mdl-38382255

RESUMEN

Colourimetric indicators have potential applications in monitoring food freshness and offer a simple, rapid, effective, and economical approach. Blending sodium alginate (SA) with agar (AG), an ideal choice for solid substrates in colourimetric indicators, can modify mechanical compliance and optical properties. However, the limitations in the water-sustaining capacity and dye migration of hydrogel substrates significantly impede the scalability and commercial application of these indicators. In this study, we designed and prepared a bilayer-structured indicator featuring an SA/AG colourimetric film on a porous Polypropylene fluoride (PVDF)/SiO2 encapsulation film. This design aims to enhance the water-sustaining capacity and reduce dye migration from the SA/AG colourimetric film. The PVDF/SiO2 composite film was prepared using a peeling-assisted phase-conversion process, which enabled the indicator to selectively allow gas, but not water, to pass through its porous substrate. Furthermore, we tested the layered indicator film by monitoring changes in shrimp freshness. The results revealed significant and distinguishable colour changes in the indicators corresponding to the freshness and spoilage of the shrimp.


Asunto(s)
Colorimetría , Polímeros de Fluorocarbono , Embalaje de Alimentos , Polivinilos , Porosidad , Dióxido de Silicio , Agar , Alginatos , Alimentos Marinos , Agua , Concentración de Iones de Hidrógeno , Antocianinas
2.
Small ; 13(23)2017 06.
Artículo en Inglés | MEDLINE | ID: mdl-28452402

RESUMEN

Piezoelectric nanogenerators with large output, high sensitivity, and good flexibility have attracted extensive interest in wearable electronics and personal healthcare. In this paper, the authors propose a high-performance flexible piezoelectric nanogenerator based on piezoelectrically enhanced nanocomposite micropillar array of polyvinylidene fluoride-trifluoroethylene (P(VDF-TrFE))/barium titanate (BaTiO3 ) for energy harvesting and highly sensitive self-powered sensing. By a reliable and scalable nanoimprinting process, the piezoelectrically enhanced vertically aligned P(VDF-TrFE)/BaTiO3 nanocomposite micropillar arrays are fabricated. The piezoelectric device exhibits enhanced voltage of 13.2 V and a current density of 0.33 µA cm-2 , which an enhancement by a factor of 7.3 relatives to the pristine P(VDF-TrFE) bulk film. The mechanisms of high performance are mainly attributed to the enhanced piezoelectricity of the P(VDF-TrFE)/BaTiO3 nanocomposite materials and the improved mechanical flexibility of the micropillar array. Under mechanical impact, stable electricity is stably generated from the nanogenerator and used to drive various electronic devices to work continuously, implying its significance in the field of consumer electronic devices. Furthermore, it can be applied as self-powered flexible sensor work in a noncontact mode for detecting air pressure and wearable sensors for detecting some human vital signs including different modes of breath and heartbeat pulse, which shows its potential applications in flexible electronics and medical sciences.

3.
Nanoscale ; 7(27): 11536-44, 2015 Jul 21.
Artículo en Inglés | MEDLINE | ID: mdl-25981294

RESUMEN

Piezoelectricity based energy harvesting from mechanical vibrations has attracted extensive attention for its potential application in powering wireless mobile electronics recently. Here, a patterned electrohydrodynamic (EHD) pulling technology was proposed to fabricate a new self-connected, piezoelectric fiber array vertically integrated P(VDF-TrFE) nanogenerator, with a molecular poling orientation fully aligned to the principal excitation for maximized conversion and a well-bridged electrode pair for efficient charge collection. The nanogenerator is fabricated in a novel way by applying a voltage across an electrode pair sandwiching an air gap and an array of shallow micropillars, during which the EHD force tends to pull the micropillars upward, generating a microfiber array finally in robust contact with the upper electrode. Such a thermoplastic and EHD deformation of the microfibers, featured simultaneously by an electric field and by a microfiber elongation dominantly vertical to the electrode, leads to a poling orientation of P(VDF-TrFE) well coincident with the principal strain for the generator excited by a force normal to the electrodes. The as-prepared piezoelectric device exhibits an enhanced output voltage up to 4.0 V and a current of 2.6 µA, therefore the piezoelectric voltage was enhanced to 5.4 times that from the bulk film. Under periodic mechanical impact, electric signals are repeatedly generated from the device and used to power a seven-segment indicator, RBGY colored light-emitting diodes, and a large-scale liquid crystal display screen. These results not only provide a tool for fabricating 3D piezoelectric polymers but offer a new type of self-connected nanogenerator for the next generation of self-powered electronics.

4.
ACS Appl Mater Interfaces ; 6(16): 14167-73, 2014 Aug 27.
Artículo en Inglés | MEDLINE | ID: mdl-25102359

RESUMEN

The studies on bioinspired dry adhesion have demonstrated the biomimetic importance of a surface arrayed with mushroom-shaped microfibers among other artificially textured surfaces. The generation of a mushroom-shaped microfiber array with a high aspect ratio and a large tip diameter remains to be investigated. In this paper we report a three-step process for producing mushroom-shaped microfibers with a well-controlled aspect ratio and tip diameter. First, a polymer film coated on an electrically conductive substrate is prestructured into a low-aspect-ratio micropillar array by hot embossing. In the second step, an electrical voltage is applied to an electrode pair composed of the substrate and another conductive planar plate, sandwiching an air clearance. The Maxwell force induced on the air-polymer interface by the electric field electrohydrodynamically pulls the preformed micropillars upward to contact the upper electrode. Finally, the micropillars spread transversely on this electrode due to the electrowetting effect, forming the mushroom tip. In this paper we have demonstrated a polymer surface arrayed with mushroom-shaped microfibers with a large tip diameter (3 times the shaft diameter) and a large aspect ratio (above 10) and provided the testing results for dry adhesion.


Asunto(s)
Adhesivos/química , Biomimética/métodos , Polímeros/química
5.
Opt Lett ; 38(15): 2720-2, 2013 Aug 01.
Artículo en Inglés | MEDLINE | ID: mdl-23903122

RESUMEN

We introduce a strategy to generate uniform illumination. The droplet pinned by a hydrophilic/superhydrophobic heterogeneous surface is oscillated, driven by a laterally placed loudspeaker. The vibrated droplet can be considered as a tunable lens, whose focus and focus length can be real-time tuned. The tunable "lens" is presented as a device for uniform illumination by mechanical manipulation. The incident light is scattered by the vibrated droplet during oscillation, and the irradiance distribution on the image plane becomes larger and more homogenous when the droplet is at resonance.


Asunto(s)
Biomimética , Interacciones Hidrofóbicas e Hidrofílicas , Iluminación/métodos , Vibración , Dispositivos Ópticos , Propiedades de Superficie
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...