Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Bioinformatics ; 39(1)2023 01 01.
Artículo en Inglés | MEDLINE | ID: mdl-36688702

RESUMEN

MOTIVATION: Cellular behavior is determined by complex non-linear interactions between numerous intracellular molecules that are often represented by Boolean network models. To achieve a desired cellular behavior with minimal intervention, we need to identify optimal control targets that can drive heterogeneous cellular states to the desired phenotypic cellular state with minimal node intervention. Previous attempts to realize such global stabilization were based solely on either network structure information or simple linear dynamics. Other attempts based on non-linear dynamics are not scalable. RESULTS: Here, we investigate the underlying relationship between structurally identified control targets and optimal global stabilizing control targets based on non-linear dynamics. We discovered that optimal global stabilizing control targets can be identified by analyzing the dynamics between structurally identified control targets. Utilizing these findings, we developed a scalable global stabilizing control framework using both structural and dynamic information. Our framework narrows down the search space based on strongly connected components and feedback vertex sets then identifies global stabilizing control targets based on the canalization of Boolean network dynamics. We find that the proposed global stabilizing control is superior with respect to the number of control target nodes, scalability, and computational complexity. AVAILABILITY AND IMPLEMENTATION: We provide a GitHub repository that contains the DCGS framework written in Python as well as biological random Boolean network datasets (https://github.com/sugyun/DCGS). SUPPLEMENTARY INFORMATION: Supplementary data are available at Bioinformatics online.


Asunto(s)
Redes Reguladoras de Genes , Dinámicas no Lineales , Algoritmos
2.
Nat Commun ; 13(1): 2793, 2022 05 19.
Artículo en Inglés | MEDLINE | ID: mdl-35589735

RESUMEN

Although stromal fibroblasts play a critical role in cancer progression, their identities remain unclear as they exhibit high heterogeneity and plasticity. Here, a master transcription factor (mTF) constructing core-regulatory circuitry, PRRX1, which determines the fibroblast lineage with a myofibroblastic phenotype, is identified for the fibroblast subgroup. PRRX1 orchestrates the functional drift of fibroblasts into myofibroblastic phenotype via TGF-ß signaling by remodeling a super-enhancer landscape. Such reprogrammed fibroblasts have myofibroblastic functions resulting in markedly enhanced tumorigenicity and aggressiveness of cancer. PRRX1 expression in cancer-associated fibroblast (CAF) has an unfavorable prognosis in multiple cancer types. Fibroblast-specific PRRX1 depletion induces long-term and sustained complete remission of chemotherapy-resistant cancer in genetically engineered mice models. This study reveals CAF subpopulations based on super-enhancer profiles including PRRX1. Therefore, mTFs, including PRRX1, provide another opportunity for establishing a hierarchical classification system of fibroblasts and cancer treatment by targeting fibroblasts.


Asunto(s)
Fibroblastos Asociados al Cáncer , Neoplasias , Animales , Fibroblastos Asociados al Cáncer/metabolismo , Fibroblastos/metabolismo , Ratones , Miofibroblastos , Neoplasias/metabolismo , Factores de Transcripción/genética , Factores de Transcripción/metabolismo
4.
Proc Natl Acad Sci U S A ; 117(49): 31535-31546, 2020 12 08.
Artículo en Inglés | MEDLINE | ID: mdl-33229519

RESUMEN

Cellular senescence is defined as a stable, persistent arrest of cell proliferation. Here, we examine whether senescent cells can lose senescence hallmarks and reenter a reversible state of cell-cycle arrest (quiescence). We constructed a molecular regulatory network of cellular senescence based on previous experimental evidence. To infer the regulatory logic of the network, we performed phosphoprotein array experiments with normal human dermal fibroblasts and used the data to optimize the regulatory relationships between molecules with an evolutionary algorithm. From ensemble analysis of network models, we identified 3-phosphoinositide-dependent protein kinase 1 (PDK1) as a promising target for inhibitors to convert the senescent state to the quiescent state. We showed that inhibition of PDK1 in senescent human dermal fibroblasts eradicates senescence hallmarks and restores entry into the cell cycle by suppressing both nuclear factor κB and mTOR signaling, resulting in restored skin regeneration capacity. Our findings provide insight into a potential therapeutic strategy to treat age-related diseases associated with the accumulation of senescent cells.


Asunto(s)
Proteínas Quinasas Dependientes de 3-Fosfoinosítido/antagonistas & inhibidores , Senescencia Celular , Dermis/citología , Fibroblastos/citología , Fibroblastos/enzimología , Inhibidores de Proteínas Quinasas/farmacología , Proteínas Quinasas Dependientes de 3-Fosfoinosítido/metabolismo , Adulto , Ciclo Celular/efectos de los fármacos , Senescencia Celular/efectos de los fármacos , Simulación por Computador , Femenino , Fibroblastos/efectos de los fármacos , Humanos , Persona de Mediana Edad , Modelos Biológicos , Fenotipo , Fosfoproteínas/metabolismo , Regeneración/efectos de los fármacos , Envejecimiento de la Piel/efectos de los fármacos , Adulto Joven
5.
Nat Commun ; 9(1): 3016, 2018 08 01.
Artículo en Inglés | MEDLINE | ID: mdl-30069061

RESUMEN

Although fibroblasts are dormant in normal tissue, they exhibit explosive activation during wound healing and perpetual activation in pathologic fibrosis and cancer stroma. The key regulatory network controlling these fibroblast dynamics is still unknown. Here, we report that Twist1, a key regulator of cancer-associated fibroblasts, directly upregulates Prrx1, which, in turn, increases the expression of Tenascin-C (TNC). TNC also increases Twist1 expression, consequently forming a Twist1-Prrx1-TNC positive feedback loop (PFL). Systems biology studies reveal that the Twist1-Prrx1-TNC PFL can function as a bistable ON/OFF switch and regulates fibroblast activation. This PFL can be irreversibly activated under pathologic conditions, leading to perpetual fibroblast activation. Sustained activation of the Twist1-Prrx1-TNC PFL reproduces fibrotic nodules similar to idiopathic pulmonary fibrosis in vivo and is implicated in fibrotic disease and cancer stroma. Considering that this PFL is specific to activated fibroblasts, Twist1-Prrx1-TNC PFL may be a fibroblast-specific therapeutic target to deprogram perpetually activated fibroblasts.


Asunto(s)
Retroalimentación , Fibroblastos/metabolismo , Animales , Fibroblastos Asociados al Cáncer/metabolismo , Fibroblastos Asociados al Cáncer/patología , Línea Celular , Fibrosis , Proteínas de Homeodominio/metabolismo , Humanos , Ratones Endogámicos BALB C , Proteínas Nucleares/metabolismo , Biología de Sistemas , Tenascina/metabolismo , Proteína 1 Relacionada con Twist/metabolismo
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...