Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 48
Filtrar
Más filtros











Base de datos
Intervalo de año de publicación
1.
Small ; : e2401674, 2024 Jul 30.
Artículo en Inglés | MEDLINE | ID: mdl-39077956

RESUMEN

Electrochemical growth of metal nanocrystals is pivotal for material synthesis, processing, and resource recovery. Understanding the heterogeneous interface between electrolyte and electrode is crucial for nanocrystal nucleation, but the influence of this interaction is still poorly understood. This study employs advanced in situ measurements to investigate the heterogeneous nucleation of metals on solid surfaces. By observing the copper nanocrystal electrodeposition, an interphase interaction-induced nucleation mechanism highly dependent on substrate surface energy is uncovered. It shows that a high-energy (HE) electrode tended to form a polycrystalline structure, while a low-energy (LE) electrode induced a monocrystalline structure. Raman and electrochemical characterizations confirmed that HE interface enhances the interphase interaction, reducing the nucleation barrier for the sturdy nanostructures. This leads to a 30.92-52.21% reduction in the crystal layer thickness and a 19.18-31.78% increase in the charge transfer capability, promoting the formation of a uniform and compact film. The structural compactness of the early nucleated crystals enhances the deposit stability for long-duration electrodeposition. This research not only inspires comprehension of physicochemical processes correlated with heterogeneous nucleation, but also paves a new avenue for high-quality synthesis and efficient recovery of metallic nanomaterials.

2.
Sci Adv ; 10(21): eadn8696, 2024 May 24.
Artículo en Inglés | MEDLINE | ID: mdl-38787943

RESUMEN

Drinking water with micropollutants is a notable environmental concern worldwide. Membrane separation is one of the few methods capable of removing micropollutants from water. However, existing membranes face challenges in the simultaneous and efficient treatment of small-molecular and ionic contaminants because of their limited permselectivity. Here, we propose a high-efficiency water purification method using a low-pressure Janus membrane with electro-induced multi-affinity. By virtue of hydrophobic and electrostatic interactions between the functional interfaces and contaminants, the Janus membrane achieves simultaneous separation of diverse types of organics and heavy metals from water via single-pass filtration, with an approximately 100% removal efficiency, high water flux (>680 liters m-2 hour-1), and 98% lower energy consumption compared with commercial nanofiltration membranes. The electro-induced switching of interfacial affinity enables 100% regeneration of membrane performance; thus, our work paves a sustainable avenue for drinking water purification by regulating the interfacial affinity of membranes.

3.
Environ Sci Technol ; 57(45): 17640-17648, 2023 11 14.
Artículo en Inglés | MEDLINE | ID: mdl-37906121

RESUMEN

Membrane technology provides an attractive approach for water purification but faces significant challenges in separating small molecules due to its lack of satisfactory permselectivity. In this study, a polypyrrole-based active membrane with a switchable multi-affinity that simultaneously separates small ionic and organic contaminants from water was created. Unlike conventional passive membranes, the designed membrane exhibits a good single-pass filtration efficiency (>99%, taking 1-naphthylamine and Pb2+ as examples) and high permeability (227 L/m2/h). Applying a reversible potential can release the captured substances from the membrane, thus enabling membrane regeneration and self-cleaning without the need for additives. Advanced characterizations reveal that potential switching alters the orientation of the doped amphipathic molecules with the self-alignment of the hydrophobic alkyl chains or the disordered sulfonate anions to capture the target organic molecules or ions via hydrophobic or electrostatic interactions, respectively. The designed smart membrane holds great promise for controllable molecular separation and water purification.


Asunto(s)
Polímeros , Purificación del Agua , Polímeros/química , Pirroles , Filtración , Electricidad , Iones
4.
Environ Sci Technol ; 57(36): 13658-13668, 2023 09 12.
Artículo en Inglés | MEDLINE | ID: mdl-37647171

RESUMEN

Ionic contaminants such as Cr(VI) pose a challenge for water purification using membrane-based processes. However, existing membranes have low permeability and selectivity for Cr(VI). Therefore, in this study, we prepared an electrically controlled adsorptive membrane (ECAM-L) by coating a loose Cl--doped polypyrrole layer on a carbon nanotube substrate, and we evaluated the performance of ECAM-L for Cr(VI) separation from water. We also used electrochemical quartz crystal microbalance measurements and molecular dynamics and density functional theory calculations to investigate the separation mechanisms. The adsorption and desorption of Cr(VI) could be modulated by varying the electrostatic interactions between ECAM-L and Cr(VI) via potential control, enabling the cyclic use of the ECAM-L without additional additives. Consequently, the oxidized ECAM-L showed high Cr(VI) removal performance (<50 µg/L) and treatment capacity (>3500 L/m2) at a high water flux (283 L/m2/h), as well as reusability after the application of a potential. Our study demonstrates an efficient membrane design for water decontamination that can selectively separate Cr(VI) through a short electric stimulus.


Asunto(s)
Polímeros , Pirroles , Adsorción , Agua
5.
Environ Sci Technol ; 57(12): 5003-5012, 2023 03 28.
Artículo en Inglés | MEDLINE | ID: mdl-36931868

RESUMEN

The adsorption of contaminants by porous carbon has been extensively studied by conventional isotherm and kinetic methods. However, the co-adsorption behavior and sorption sites of multiple contaminants in different-sized pores remain unclear. Herein, the nuclear magnetic resonance (NMR) approach is performed to investigate the adsorption mechanism of toluene and cetane in the confined space of carbon at the molecular level. The ring current effect induces the variation in the NMR chemical shifts of in-pore adsorbed toluene and cetane, realizing the identification of pore-dependent adsorption sites for contaminant removal. Cetane has a slower adsorption kinetic but a higher binding energy than toluene, which could squeeze toluene from micropores to larger pores with increasing adsorption quantity. This leads to a stronger competitive adsorption effect in small micropores than in mesopores. Accordingly, hierarchical porous carbons are determined to be the most effective adsorbents for the adsorption of coexisting contaminants. This study not only provides an effective NMR method to reveal the adsorption mechanism in the confined space of porous carbon at the molecular level but also offers new insights into the pore size-dependent adsorption of activated carbon for petroleum contaminant treatment.


Asunto(s)
Carbón Orgánico , Tolueno , Tolueno/química , Porosidad , Espectroscopía de Resonancia Magnética , Adsorción , Ácido Ascórbico
6.
Angew Chem Int Ed Engl ; 62(19): e202302050, 2023 May 02.
Artículo en Inglés | MEDLINE | ID: mdl-36914574

RESUMEN

All-solid-state Z-Scheme photocatalysts have attracted significant attention due to their great potential for solar fuel production. However, delicately coupling two individual semiconductors with a charge shuttle by a material strategy remains a challenge. Herein, we demonstrate a new protocol of natural Z-Scheme heterostructures by strategically engineering the component and interfacial structure of red mud bauxite waste. Advanced characterizations elucidated that the hydrogen-induced formation of metallic Fe enabled the effective Z-Scheme electron transfer from γ-Fe2 O3 to TiO2 , leading to the significantly boosted spatial separation of photo-generated carriers for overall water splitting. To the best of our knowledge, it is the first Z-Scheme heterojunction based on natural minerals for solar fuel production. Thus our work provides a new avenue toward the utilization of natural minerals for advanced catalysis applications.

7.
J Am Chem Soc ; 145(3): 1759-1768, 2023 Jan 25.
Artículo en Inglés | MEDLINE | ID: mdl-36607337

RESUMEN

Integrating different reaction sites offers new prospects to address the difficulties in single-atom catalysis, but the precise regulation of active sites at the atomic level remains challenging. Here, we demonstrate a sodium-directed photon-induced assembly (SPA) strategy for boosting the atomic utilization efficiency of single-atom catalysts (SACs) by constructing multifarious Au sites on TiO2 substrate. Na+ was employed as the crucial cement to direct Au single atoms onto TiO2, while the light-induced electron transfer from excited TiO2 to Au(Na+) ensembles contributed to the self-assembly formation of Au nanoclusters. The synergism between plasmonic near-field and Schottky junction enabled the cascade electron transfer for charge separation, which was further enhanced by oxygen vacancies in TiO2. Our dual-site photocatalysts exhibited a nearly 2 orders of magnitude improvement in the hydrogen evolution activity under simulated solar light, with a striking turnover frequency (TOF) value of 1533 h-1 that exceeded other Au/TiO2-based photocatalysts reported. Our SPA strategy can be easily extended to prepare a wide range of metal-coupled nanostructures with enhanced performance for diverse catalytic reactions. Thus, this study provides a well-defined platform to extend the boundaries of SACs for multisite catalysis through harnessing metal-support interactions.

8.
J Colloid Interface Sci ; 629(Pt A): 206-214, 2023 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-36067599

RESUMEN

Photocatalytic CO2 reduction is a promising method to resolve the energy shortage problem. Developing photocatalysts with strong redox capabilities is urgently needed to achieve high photocatalytic activity. Herein, we synthesized TiO2/CsPbBr3 S-scheme heterojunctions with modulated internal electric field by facet engineering of TiO2 to control charge transfer for improved photocatalytic activity. Density functional theory (DFT) calculation reveals that there is a wider Fermi level difference between TiO2-(101) and CsPbBr3 than that between TiO2-(001) and CsPbBr3, which will induce more obvious band bending. Subsequently, more efficient spatial separation will occur around the interface. Thus, TiO2-(101)/CsPbBr3 heterostructures effectively reduce CO2 into CO with the selectivity of 90.2 % and reduction rate of 12.5 µmol h-1, 15.6 and 5.6 times improvement than that of 101-TiO2 and TiO2-(001)/CsPbBr3, respectively. This report proposes a feasible idea of employing facet engineering to take the advantage of S-scheme heterojunction.

9.
Phys Chem Chem Phys ; 25(3): 1538-1545, 2023 Jan 18.
Artículo en Inglés | MEDLINE | ID: mdl-36541425

RESUMEN

Due to the excellent application prospects in the fields of new energy generation and environmental remediation, photocatalysis technology has attracted the increasing attention of researchers. Although significant progress has been made in the past decades, the practical application of this technology is still restricted by the moderate catalytic efficiency. To improve the performance of catalysts, new methods are extremely required for the controllable synthesis of high-efficiency catalysts. To further comprehend the relationship between material structure and catalytic activity, the surface active sites of catalysts should be regulated at the atomic and molecular levels. As the fourth state of matter, plasma can generate diverse active species with low energy consumption. As a subset of plasmas, non-thermal plasma (NTP), defined by the great temperature difference between ions (near room temperature) and electrons (usually hotter than 2 orders of magnitude), contributes to the rapid synthesis of functional nanomaterials under relatively mild conditions. Furthermore, NTP has been widely used for the surface modification of materials. Therefore, the combination of NTP and photocatalysis is expected to provide an ideal approach to synthesize high-performance catalysts and precisely customize their surface structures, which is becoming a new direction in the field of catalysis research. This paper fundamentally reviews the progress in the combination of NTP with photocatalysis for versatile applications. Beginning with the principles of photocatalysis and plasma technology, the application of NTP for catalyst synthesis, the plasma-assisted modification of surface actives sites, and the impact of plasma-involved processes on the catalytic performance are discussed, which will provide useful insights into the performance enhancement of catalysts via plasma-assisted processes.

10.
Angew Chem Int Ed Engl ; 61(46): e202212706, 2022 Nov 14.
Artículo en Inglés | MEDLINE | ID: mdl-36138516

RESUMEN

Photoreduction of CO2 provides an appealing way to alleviate the energy crisis and manage the global carbon balance but is limited by the high activation energy and the rate-limiting proton transfer. We now develop a dual-site strategy for high-efficiency CO2 conversion through polarizing CO2 molecules at pyridine N vacancies and accelerating the intermediate protonation by protonated pyridine N adjacent to nitrogen vacancies on polymeric carbon nitride. Our photocatalysts with atomic-level engineered active sites manifest a high CO production rate of 1835 µmol g-1 h-1 , 183 times higher than the pristine bulk carbon nitride. Theoretical prediction and experimental studies confirm that such excellent performance is attributed to the synergistic effect between vacant and protonated pyridine N in decreasing the formation energy of the key *COOH intermediates and the efficient electron transfer relay facilitated by the defect-induced shallow trap state and homogeneous charge mediators.

11.
Water Res ; 222: 118955, 2022 Aug 15.
Artículo en Inglés | MEDLINE | ID: mdl-35963136

RESUMEN

Comprehending the effects of synthetic nanomaterials on natural microorganisms is critical for the development of emerging nanotechnologies. Compared to artificial inactivation of microbes, the up-regulation of biological functions should be more attractive due to the possibility of discovering unexpected properties. Herein, a nanoengineering strategy was employed to tailor g-C3N4 for the metabolic regulation of algae. We found that surface protonated g-C3N4 (P-C3N4) as a nanopolymeric elicitor enabled the reinforced biological activity of Microcystis aeruginosa and Scenedesmus for harmful substances removal. Metabolomics analysis suggested that synthetic nanoarchitectures induced moderate oxidative stress of algae, with up-regulated biosynthesis of extracellular polymeric substances (EPS) for resisting the physiological damage caused by toxic substances in water. The formation of oxidative .O2- contributed to over five-fold enhancement in the biodecomposition of harmful aniline. Our study demonstrates a synergistic biotic-abiotic platform with valuable outcomes for various customized applications.


Asunto(s)
Microalgas , Scenedesmus , Descontaminación , Microalgas/metabolismo , Nitrilos , Scenedesmus/metabolismo , Agua/metabolismo
12.
Water Res ; 218: 118465, 2022 Jun 30.
Artículo en Inglés | MEDLINE | ID: mdl-35461103

RESUMEN

Bio-denitrification plays a crucial role in the purification of nitrogen contaminated water, yet the low efficiency of the pure biological system often leads to the accumulation of harmful intermediates. Semi-biological catalysis provides an effective approach to improving the reaction efficiency through hybridizing artificial nanomaterials with natural organisms, yet the application of this strategy in bio-denitrification is limited. In this study, the effect of surface engineered carbon nitride on the denitrification capability of denitrifying bacteria was investigated. We found that cyano groups availed the biotic-abiotic interactions, while immobilized cobalt single atoms attenuated the local electrostatic repulsion. This synergistic effect endowed carbon nitride modified with cobalt atoms and cyano groups (Co/C3N4-C) with the unexpected acceleration of bio-denitrification reaction, without the accumulation of harmful intermediates. According to the metabolomics analysis, this improvement was attributed to the moderate metabolic adaptation caused by nanoelicitor, which induced dramatically boosted electron transfer and energy supply for extracellular polymeric substance (EPS) secretion. The elevation of intracellular iron level increased the activities of denitrification reductase, which was evidenced by metatranscriptomic analysis. Our results not only demonstrate the great potential of carbon nitride as an artificial elicitor for biological regulation, but also shed light on comprehending the complicated biotic-abiotic interactions for versatile application.


Asunto(s)
Desnitrificación , Matriz Extracelular de Sustancias Poliméricas , Carbono , Cobalto , Grafito , Nitratos , Nitrógeno , Compuestos de Nitrógeno
13.
Huan Jing Ke Xue ; 43(3): 1521-1528, 2022 Mar 08.
Artículo en Chino | MEDLINE | ID: mdl-35258216

RESUMEN

By using in-situ synthesis of polythioamide (PTA) on activated carbon (AC), a polythioamide-modified activated carbon-based adsorbent (AC-PTA) was successfully prepared and used to study the selective adsorption effect and mechanism of Au(Ⅲ) in wastewater. The results showed that AC-PTA exhibited excellent selective adsorption to Au(Ⅲ) in the coexisting solution of multiple metal ions in a wide pH range (<5.0). The adsorption effect for Au(Ⅲ) was the best at a pH of 2 and 3; the concentration of residue Au(Ⅲ) was less than 0.1 mg·L-1, whereas other metals were barely adsorbed. The selective adsorption process for Au(Ⅲ) conformed to the pseudo-second kinetic model (R2=0.9853), the thermodynamic process conformed to the Langmuir isotherm process (R2=0.9936), and adsorption capacity was up to 2018 mg·g-1. Such advantages were mainly attributed to the coordination interaction between the -C([FY=,1]S)NH- functional groups on the AC-PTA surface and Au(Ⅲ), the electrostatic adsorption between the positive AC-PTA and negative Au(Ⅲ) complex anions, and the direct reduction of Au(Ⅲ) by AC. The successful recovery of gold was finally realized by burning the adsorbed AC-PTA at 1000℃ for 4 hours under air conditions, and solid gold with a mass fraction higher than 90.0% was obtained. This study provided the possibility for selective adsorption and recovery of low concentration Au(Ⅲ) from actual wastewater.


Asunto(s)
Carbón Orgánico , Contaminantes Químicos del Agua , Adsorción , Concentración de Iones de Hidrógeno , Cinética , Aguas Residuales/química , Contaminantes Químicos del Agua/análisis
14.
J Colloid Interface Sci ; 615: 456-464, 2022 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-35150953

RESUMEN

Designing non-precious electrocatalysts with multiple active centers and durability toward overall water splitting is of great significance for storing renewable energy. This study reports a low-cost Mo, Fe codoped NiCoPx electrocatalysts derived from Co-Fe Prussian blue analogue and following phosphorization process. Benefitted from the optimized electronic configuration, hierarchical structure and abundant active sites, the Mo,Fe-NiCoPx/NF electrode has shown competitive oxygen evolution reaction (ƞ10 = 197 mV) and hydrogen evolution reaction performance (ƞ10 = 99 mV) when the current density is 10 mA cm-2 in 1 M KOH solution. Moreover, the integrated water splitting device assembled by Mo,Fe-NiCoPx/NF as both anode and cathode only needs a voltage of 1.545 V to reach 10 mA cm-2. Density functional theory results further confirm that the Mo, Fe codoped heterostructure can synergistically optimize the d-band center and Gibbs free energy during electrocatalytic processes, thus accelerating the kinetics of electrochemical water splitting. This work demonstrates the importance of rational combination of metal doping and interface engineering for advanced catalytic materials.

15.
Environ Sci Technol ; 56(6): 3552-3563, 2022 03 15.
Artículo en Inglés | MEDLINE | ID: mdl-35212521

RESUMEN

Photocatalysis provides an impetus for the synergetic removal of Cr(VI) and organic contaminants, but the generation of Cr intermediates and their potential oxidizability may be overlooked in pollutant conversion. Herein, the Cr intermediates in the Cr(VI) reduction process were emphasized in Cr(VI)/bisphenol A (BPA) by using graphitic carbon nitride as a photocatalyst. The active species for BPA photodegradation in the BPA system and Cr(VI)/BPA system suggested that the Cr(VI) reduction process indeed promotes BPA photodegradation. Electron paramagnetic resonance (EPR) of Cr complexes and in situ variable-temperature EPR analysis demonstrated Cr(V) intermediate (g = 1.978) generation in Cr(VI) reduction and its oxidization for BPA degradation in photocatalysis. By adding the electron donor Na2SO3, BPA degradation was induced in Cr(VI)/BPA solution, further confirming the positive effect of Cr(V). Moreover, the difference in BPA degradation products in the BPA/air, Cr(VI)/BPA/air, and Cr(VI)/BPA/Ar systems indirectly explained why the Cr(V) intermediate was involved in BPA degradation. Density functional theory calculations revealed that photogenerated electrons can reduce the free energy (0.98 eV) of converting Cr(VI) into Cr(V), which can facilitate the subsequent Cr(V) oxidation step for BPA degradation. This work contributes to the exploration of the Cr(VI) reduction process and the synergistic removal of organic pollutants in Cr(VI)/organics systems.


Asunto(s)
Cromo , Contaminantes Ambientales , Catálisis , Oxidación-Reducción , Fotólisis
16.
J Hazard Mater ; 424(Pt B): 127424, 2022 Feb 15.
Artículo en Inglés | MEDLINE | ID: mdl-34634708

RESUMEN

Exfoliation of carbon nitride (g-C3N4) into an ultrathin nanostructure significantly improves its photoactivity. However, the effects of the exfoliation method on the microstructure and photocatalytic performance of g-C3N4 nanosheets remain largely unknown. Herein, several typical strategies, such as thermal, chemical, ultrasonic and one-step exfoliation, were applied to exfoliate g-C3N4 nanosheets for photocatalytic applications. A procedure capable of controlling the morphology, microstructure, light-absorption property, and visible light photoactivity of g-C3N4 nanosheets was attempted. We found that nanosheets prepared from one-step exfoliation present superior photocatalytic efficiency under visible light than those fabricated by thermal exfoliation and ultrasonic exfoliation. The kinetic constants for bisphenol A (BPA) photodegradation over these samples were determined to be 6.5, 4.5 and 2.3 times higher than bulk g-C3N4, respectively. For chemical exfoliation, excessive oxidation by H2SO4 can lead to the structural defects and deactivation of urea-derived g-C3N4 nanosheets. Carbon nitride nanosheets synthesized by one-step exfoliation exhibited high specific surface area, optimal band gap energy structure, and high charge separation efficiency, thereby increasing visible-light photoactivity. Enabling cost-effective production of ultrathin and robust g-C3N4 nanosheets, one-step exfoliation offers a potential strategy to exploit high-performance g-C3N4 for water purification applications.

17.
Water Res ; 200: 117207, 2021 Jul 15.
Artículo en Inglés | MEDLINE | ID: mdl-34020332

RESUMEN

Membrane separation is a promising technology that can effectively remove various existing contaminants from water with low energy consumption and small carbon footprint. The critical issue of membrane technology development is to obtain a low-cost, stable, tunable and multifunctional material for membrane fabrication. Graphitic carbon nitride (g-C3N4) has emerged as a promising membrane material, owing to the unique structure characteristics and outstanding catalytic activity. This review paper outlined the advanced material strategies used to regulate the molecule structure of g-C3N4 for membrane separation. The presentative progresses on the applications of g-C3N4-based membranes for water purification have been elaborated. Essentially, we highlighted the innovation integration of physical separation, catalysis and energy conversion during water purification, which was of great importance for the sustainability of water treatment techniques. Finally, the continuing challenges of g-C3N4-based membranes and the possible breakthrough directions in the future research was prospected.


Asunto(s)
Grafito , Purificación del Agua , Catálisis , Compuestos de Nitrógeno
18.
J Hazard Mater ; 406: 124692, 2021 03 15.
Artículo en Inglés | MEDLINE | ID: mdl-33310323

RESUMEN

Active site engineering is of significant importance for developing high activity metal-organic frameworks (MOFs) for catalytic applications. Herein, we develop a one-pot strategy to construct bimetal organic frameworks with Fe-Co dual sites for Fenton-like catalysis. Density functional theory (DFT) demonstrated that the introducing Co heteroatoms into MIL-101(Fe) (MIL represents Matérial Institute Lavoisier) was favorable for the formation of electron-deficient centers around benzene rings and electron-rich centers around Fe/Co. This synergistic effect could effectively decrease the energy barrier of H2O2 activation. Due to the facilitated charge transfer in the coordinated structures, MIL-101(Fe,Co) with engineered dual sites exhibited exceptionally high efficiency for the degradation of ciprofloxacin (CIP). The reaction rate of MIL-101(Fe,Co)/H2O2 system was 0.12 min-1, which was nearly 7.5 times higher than that of pristine MIL-101(Fe). The reaction mechanism of heterogeneous Fenton-like catalysis was fundamentally investigated by series of in-situ techniques, such as DRIFTS and Raman. ·OH radicals generated by H2O2 activation endowed the inspiring ability of MIL-101(Fe,Co) for water decontamination. This work offers a facile principle of exploring MOFs-based Fenton-like catalysts with a wide working pH range for environmental applications.

19.
Huan Jing Ke Xue ; 41(10): 4607-4614, 2020 Oct 08.
Artículo en Chino | MEDLINE | ID: mdl-33124393

RESUMEN

Practical use of heterogeneous Fenton-like catalysis is inhibited by poor mass transfer and slow conversion of Fe(Ⅲ) to Fe(Ⅱ). In this study, we prepared a novel iron-copper bimetallic organic framework (MIL-101 (Fe,Cu)) using the solvothermal method, and carefully investigated its interfacial characters, catalytic efficacy toward dyes with methylene blue as a model pollutant, and the catalytic activating mechanisms involved in it. The MIL-101(Fe,Cu) exhibited a three-dimensional octahedral shape with a complete crystal structure. The specific BET surface area and average pore size were determined to be as high as 667.2 m2 ·g-1 and 1.9 nm, respectively. These characteristics benefits the exposure of the reactive sites and accelerates mass transfer accordingly. The MIL-101(Fe,Cu)/H2 O2 exhibited promising efficiency toward the degradation of methylene blue in a wide pH range; moreover, at a pH value of 5, the removal efficiency observed was as high as 100% after 20 min of reaction, which was 43.1% and 88.9% higher than that of MIL-101(Fe)/H2 O2 and H2 O2, respectively. Hydroxyl radical ( ·OH) is a dominant active species involved in the degradation of methylene blue using MIL-101(Fe,Cu)/H2 O2 as indicated in radicals quenching experiments. The results of species transformation in Fe and Cu indicated that Cu(Ⅱ) doping provided more active sites, and the Cu(Ⅱ)/Cu(Ⅰ) and Fe(Ⅲ)/Fe(Ⅱ) cycles synergistically facilitated ·OH generation to improve the Fenton-like catalytic efficiency accordingly. The MIL-101(Fe,Cu) as a novel heterogeneous Fenton-like catalyst achieved good performance without any significant pH adjustment and is practically viable for industrial wastewater treatment.


Asunto(s)
Cobre , Hierro , Catálisis , Colorantes , Peróxido de Hidrógeno , Estructuras Metalorgánicas , Oxidación-Reducción
20.
Environ Sci Technol ; 54(16): 10323-10332, 2020 08 18.
Artículo en Inglés | MEDLINE | ID: mdl-32650637

RESUMEN

Exploring photoactive biotic-abiotic conjugations is of great importance for a variety of applications, but it remains difficult to probe the interfacial transfer of photoinduced charge carriers. In this work, Kelvin probe force microscopy, together with fluorescence imaging technique, were used to visually observe the spatial distribution and interfacial behavior of photocarriers in Microcystis aeruginosa/TiO2 hybrids. Experimental investigations suggested that photosynthetic microalgae cells were prone to trap photoholes from TiO2 photocatalysts. Oxygen vacancy defects in semiconductor exhibited significant impact on the charge migration, as the surface photovoltage of hydrogenated TiO2/microalgae hybrid was much higher than the pristine system. Profiting from the bioenhanced charge separation, biotic-abiotic architecture presented remarkably increased activity for photocatalytic inactivation of microalgae microorganisms. This work not only highlights the visual techniques for understanding the charge transfer around biotic-abiotic interface, but also provides a bioenhanced conjugation for the photocatalytic elimination of microorganisms in water treatment applications.


Asunto(s)
Microalgas , Microcystis , Microscopía de Fuerza Atómica , Imagen Óptica , Titanio
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA