Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 21
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
bioRxiv ; 2024 Feb 03.
Artículo en Inglés | MEDLINE | ID: mdl-38352530

RESUMEN

Screening a transposon-mutagenized soybean population led to the discovery of a recessively inherited chlorotic phenotype. This "vir1" phenotype results in smaller stature, weaker stems, and a smaller root system with smaller nodules. Genome sequencing identified 15 candidate genes with mutations likely to result in a loss of function. Amplicon sequencing of a segregating population was then used to narrow the list to a single candidate mutation, a single-base change in Glyma.07G102300 that disrupts splicing of the second intron. Single cell transcriptomic profiling indicates that this gene is expressed primarily in mesophyll cells and RNA sequencing data indicates it is upregulated in germinating seedlings by cold stress. Previous studies have shown that mutations to Os05g34040, the rice homolog of Glyma.07G102300, produced a chlorotic phenotype that was more pronounced in cool temperatures. Growing soybean vir1 mutants at lower temperatures also resulted in a more severe phenotype. In addition, transgenic expression of wild type Glyma.07G102300 in the knockout mutant of the Arabidopsis homolog At4930720 rescues the chlorotic phenotype, further supporting the hypothesis that the mutation in Glyma.07G102300 is causal of the vir1 phenotype.

2.
Plant Genome ; 16(1): e20308, 2023 03.
Artículo en Inglés | MEDLINE | ID: mdl-36744727

RESUMEN

Soybean is grown primarily for the protein and oil extracted from its seed and its value is influenced by these components. The objective of this study was to map marker-trait associations (MTAs) for the concentration of seed protein, oil, and meal protein using the soybean nested association mapping (SoyNAM) population. The composition traits were evaluated on seed harvested from over 5000 inbred lines of the SoyNAM population grown in 10 field locations across 3 years. Estimated heritabilities were at least 0.85 for all three traits. The genotyping of lines with single nucleotide polymorphism markers resulted in the identification of 107 MTAs for the three traits. When MTAs for the three traits that mapped within 5 cM intervals were binned together, the MTAs were mapped to 64 intervals on 19 of the 20 soybean chromosomes. The majority of the MTA effects were small and of the 107 MTAs, 37 were for protein content, 39 for meal protein, and 31 for oil content. For cases where a protein and oil MTAs mapped to the same interval, most (94%) significant effects were opposite for the two traits, consistent with the negative correlation between these traits. A coexpression analysis identified candidate genes linked to MTAs and 18 candidate genes were identified. The large number of small effect MTAs for the composition traits suggest that genomic prediction would be more effective in improving these traits than marker-assisted selection.


Asunto(s)
Glycine max , Sitios de Carácter Cuantitativo , Glycine max/genética , Mapeo Cromosómico/métodos , Genoma de Planta , Semillas/genética
3.
Nat Commun ; 13(1): 3051, 2022 06 01.
Artículo en Inglés | MEDLINE | ID: mdl-35650185

RESUMEN

Seed protein, oil content and yield are highly correlated agronomically important traits that essentially account for the economic value of soybean. The underlying molecular mechanisms and selection of these correlated seed traits during soybean domestication are, however, less known. Here, we demonstrate that a CCT gene, POWR1, underlies a large-effect protein/oil QTL. A causative TE insertion truncates its CCT domain and substantially increases seed oil content, weight, and yield while decreasing protein content. POWR1 pleiotropically controls these traits likely through regulating seed nutrient transport and lipid metabolism genes. POWR1 is also a domestication gene. We hypothesize that the TE insertion allele is exclusively fixed in cultivated soybean due to selection for larger seeds during domestication, which significantly contributes to shaping soybean with increased yield/seed weight/oil but reduced protein content. This study provides insights into soybean domestication and is significant in improving seed quality and yield in soybean and other crop species.


Asunto(s)
Domesticación , Glycine max , Alelos , Fenotipo , Semillas/genética , Semillas/metabolismo , Glycine max/metabolismo
4.
BMC Genomics ; 23(1): 250, 2022 Mar 31.
Artículo en Inglés | MEDLINE | ID: mdl-35361112

RESUMEN

BACKGROUND: With advances in next-generation sequencing technologies, an unprecedented amount of soybean accessions has been sequenced by many individual studies and made available as raw sequencing reads for post-genomic research. RESULTS: To develop a consolidated and user-friendly genomic resource for post-genomic research, we consolidated the raw resequencing data of 1465 soybean genomes available in the public and 91 highly diverse wild soybean genomes newly sequenced. These altogether provided a collection of 1556 sequenced genomes of 1501 diverse accessions (1.5 K). The collection comprises of wild, landraces and elite cultivars of soybean that were grown in East Asia or major soybean cultivating areas around the world. Our extensive sequence analysis discovered 32 million single nucleotide polymorphisms (32mSNPs) and revealed a SNP density of 30 SNPs/kb and 12 non-synonymous SNPs/gene reflecting a high structural and functional genomic diversity of the new collection. Each SNP was annotated with 30 categories of structural and/or functional information. We further identified paired accessions between the 1.5 K and 20,087 (20 K) accessions in US collection as genomic "equivalent" accessions sharing the highest genomic identity for minimizing the barriers in soybean germplasm exchange between countries. We also exemplified the utility of 32mSNPs in enhancing post-genomics research through in-silico genotyping, high-resolution GWAS, discovering and/or characterizing genes and alleles/mutations, identifying germplasms containing beneficial alleles that are potentially experiencing artificial selection. CONCLUSION: The comprehensive analysis of publicly available large-scale genome sequencing data of diverse cultivated accessions and the newly in-house sequenced wild accessions greatly increased the soybean genome-wide variation resolution. This could facilitate a variety of genetic and molecular-level analyses in soybean. The 32mSNPs and 1.5 K accessions with their comprehensive annotation have been made available at the SoyBase and Ag Data Commons. The dataset could further serve as a versatile and expandable core resource for exploring the exponentially increasing genome sequencing data for a variety of post-genomic research.


Asunto(s)
Genómica , Glycine max , Mapeo Cromosómico , Secuenciación de Nucleótidos de Alto Rendimiento , Análisis de Secuencia de ADN , Glycine max/genética
5.
Front Plant Sci ; 12: 707127, 2021.
Artículo en Inglés | MEDLINE | ID: mdl-34804079

RESUMEN

Glutathione peroxidases (GPXs) protect cells against damage caused by reactive oxygen species (ROS) and play key roles in regulating many biological processes. Here, five GPXs were identified in the Ricinus communis genome. Phylogenetic analysis displayed that the GPXs were categorized into five groups. Conserved domain and gene structure analyses showed that the GPXs from different plant species harbored four highly similar motifs and conserved exon-intron arrangement patterns, indicating that their structure and function may have been conserved during evolution. Several abiotic stresses and hormone-responsive cis-acting elements existed in the promoters of the RcGPXs. The expression profiles indicated that the RcGPXs varied substantially, and some RcGPXs were coordinately regulated under abiotic stresses. Overexpression of RcGPX4 in Arabidopsis enhanced cold tolerance at seed germination but reduced freezing tolerance at seedlings. The expression of abscisic acid (ABA) signaling genes (AtABI4 and AtABI5), ABA catabolism genes (AtCYP707A1 and AtCYP707A2), gibberellin acid (GA) catabolism gene (AtGA2ox7), and cytokinin (CTK)-inducible gene (AtARR6) was regulated in the seeds of transgenic lines under cold stress. Overexpression of RcGPX4 can disturb the hydrogen peroxide (H2O2) homeostasis through the modulation of some antioxidant enzymes and compounds involved in the GSH-ascorbate cycle in transgenic plants. Additionally, RcGPX4 depended on the MAPK3-ICE1-C-repeat-binding factor (CBF)-COR signal transduction pathway and ABA-dependent pathway to negatively regulate the freezing tolerance of transgenic plants. This study provides valuable information for understanding the potential function of RcGPXs in regulating the abiotic stress responses of castor beans.

6.
BMC Genomics ; 22(1): 453, 2021 Jun 16.
Artículo en Inglés | MEDLINE | ID: mdl-34134624

RESUMEN

BACKGROUND: Seeds are the economic basis of oilseed crops, especially soybeans, the most widely cultivated oilseed crop worldwide. Seed development is accompanied by a multitude of diverse cellular processes, and revealing the underlying regulatory activities is critical for seed improvement. RESULTS: In this study, we profiled the transcriptomes of developing seeds at 20, 25, 30, and 40 days after flowering (DAF), as these stages represent critical time points of seed development from early to full development. We identified a set of highly abundant genes and highlighted the importance of these genes in supporting nutrient accumulation and transcriptional regulation for seed development. We identified 8925 differentially expressed genes (DEGs) that exhibited temporal expression patterns over the course and expression specificities in distinct tissues, including seeds and nonseed tissues (roots, stems, and leaves). Genes specific to nonseed tissues might have tissue-associated roles, with relatively low transcript abundance in developing seeds, suggesting their spatially supportive roles in seed development. Coexpression network analysis identified several underexplored genes in soybeans that bridge tissue-specific gene modules. CONCLUSIONS: Our study provides a global view of gene activities and biological processes critical for seed formation in soybeans and prioritizes a set of genes for further study. The results of this study help to elucidate the mechanism controlling seed development and storage reserves.


Asunto(s)
Regulación de la Expresión Génica de las Plantas , Glycine max , Perfilación de la Expresión Génica , Semillas/genética , Glycine max/genética , Transcriptoma
7.
PLoS Genet ; 16(11): e1009114, 2020 11.
Artículo en Inglés | MEDLINE | ID: mdl-33175845

RESUMEN

Soybean [Glycine max (L.) Merr.] was domesticated from wild soybean (G. soja Sieb. and Zucc.) and has been further improved as a dual-use seed crop to provide highly valuable oil and protein for food, feed, and industrial applications. However, the underlying genetic and molecular basis remains less understood. Having combined high-confidence bi-parental linkage mapping with high-resolution association analysis based on 631 whole sequenced genomes, we mapped major soybean protein and oil QTLs on chromosome15 to a sugar transporter gene (GmSWEET39). A two-nucleotide CC deletion truncating C-terminus of GmSWEET39 was strongly associated with high seed oil and low seed protein, suggesting its pleiotropic effect on protein and oil content. GmSWEET39 was predominantly expressed in parenchyma and integument of the seed coat, and likely regulates oil and protein accumulation by affecting sugar delivery from maternal seed coat to the filial embryo. We demonstrated that GmSWEET39 has a dual function for both oil and protein improvement and undergoes two different paths of artificial selection. A CC deletion (CC-) haplotype H1 has been intensively selected during domestication and extensively used in soybean improvement worldwide. H1 is fixed in North American soybean cultivars. The protein-favored (CC+) haplotype H3 still undergoes ongoing selection, reflecting its sustainable role for soybean protein improvement. The comprehensive knowledge on the molecular basis underlying the major QTL and GmSWEET39 haplotypes associated with soybean improvement would be valuable to design new strategies for soybean seed quality improvement using molecular breeding and biotechnological approaches.


Asunto(s)
Glycine max/genética , Proteínas de Transporte de Monosacáridos/genética , Fitomejoramiento , Proteínas de Plantas/genética , Mapeo Cromosómico , Genoma de Planta/genética , Estudio de Asociación del Genoma Completo , Haplotipos , Proteínas de Transporte de Monosacáridos/metabolismo , América del Norte , Aceites de Plantas/metabolismo , Proteínas de Plantas/metabolismo , Proteínas de Vegetales Comestibles/biosíntesis , Polimorfismo de Nucleótido Simple , Sitios de Carácter Cuantitativo , Semillas/metabolismo , Glycine max/metabolismo
8.
Plants (Basel) ; 8(12)2019 Dec 02.
Artículo en Inglés | MEDLINE | ID: mdl-31810261

RESUMEN

Seed, resulting from reproductive development, is the main nutrient source for human beings, and reproduction has been intensively studied through genetic, molecular, and epigenetic approaches. However, how different epigenetic pathways crosstalk and integrate to regulate seed development remains unknown. Here, we review the recent progress of epigenetic changes that affect chromatin structure, such as DNA methylation, polycomb group proteins, histone modifications, and small RNA pathways in regulating plant reproduction. In gametogenesis of flowering plants, epigenetics is dynamic between the companion cell and gametes. Cytosine DNA methylation occurs in CG, CHG, CHH contexts (H = A, C, or T) of genes and transposable elements, and undergoes dynamic changes during reproduction. Cytosine methylation in the CHH context increases significantly during embryogenesis, reaches the highest levels in mature embryos, and decreases as the seed germinates. Polycomb group proteins are important transcriptional regulators during seed development. Histone modifications and small RNA pathways add another layer of complexity in regulating seed development. In summary, multiple epigenetic pathways are pivotal in regulating seed development. It remains to be elucidated how these epigenetic pathways interplay to affect dynamic chromatin structure and control reproduction.

9.
PLoS Genet ; 15(7): e1008267, 2019 07.
Artículo en Inglés | MEDLINE | ID: mdl-31291251

RESUMEN

Increasing seed oil content is one of the most important breeding goals for soybean due to a high global demand for edible vegetable oil. However, genetic improvement of seed oil content has been difficult in soybean because of the complexity of oil metabolism. Determining the major variants and molecular mechanisms conferring oil accumulation is critical for substantial oil enhancement in soybean and other oilseed crops. In this study, we evaluated the seed oil contents of 219 diverse soybean accessions across six different environments and dissected the underlying mechanism using a high-resolution genome-wide association study (GWAS). An environmentally stable quantitative trait locus (QTL), GqOil20, significantly associated with oil content was identified, accounting for 23.70% of the total phenotypic variance of seed oil across multiple environments. Haplotype and expression analyses indicate that an oleosin protein-encoding gene (GmOLEO1), colocated with a leading single nucleotide polymorphism (SNP) from the GWAS, was significantly correlated with seed oil content. GmOLEO1 is predominantly expressed during seed maturation, and GmOLEO1 is localized to accumulated oil bodies (OBs) in maturing seeds. Overexpression of GmOLEO1 significantly enriched smaller OBs and increased seed oil content by 10.6% compared with those of control seeds. A time-course transcriptomics analysis between transgenic and control soybeans indicated that GmOLEO1 positively enhanced oil accumulation by affecting triacylglycerol metabolism. Our results also showed that strong artificial selection had occurred in the promoter region of GmOLEO1, which resulted in its high expression in cultivated soybean relative to wild soybean, leading to increased seed oil accumulation. The GmOLEO1 locus may serve as a direct target for both genetic engineering and selection for soybean oil improvement.


Asunto(s)
Glycine max/crecimiento & desarrollo , Aceites de Plantas/metabolismo , Proteínas de Plantas/genética , Semillas/química , Domesticación , Ingeniería Genética , Estudio de Asociación del Genoma Completo , Haplotipos , Polimorfismo de Nucleótido Simple , Regiones Promotoras Genéticas , Sitios de Carácter Cuantitativo , Semillas/crecimiento & desarrollo , Glycine max/genética , Glycine max/metabolismo , Triglicéridos/metabolismo
10.
G3 (Bethesda) ; 8(10): 3367-3375, 2018 10 03.
Artículo en Inglés | MEDLINE | ID: mdl-30131329

RESUMEN

Soybean is the world's leading source of vegetable protein and demand for its seed continues to grow. Breeders have successfully increased soybean yield, but the genetic architecture of yield and key agronomic traits is poorly understood. We developed a 40-mating soybean nested association mapping (NAM) population of 5,600 inbred lines that were characterized by single nucleotide polymorphism (SNP) markers and six agronomic traits in field trials in 22 environments. Analysis of the yield, agronomic, and SNP data revealed 23 significant marker-trait associations for yield, 19 for maturity, 15 for plant height, 17 for plant lodging, and 29 for seed mass. A higher frequency of estimated positive yield alleles was evident from elite founder parents than from exotic founders, although unique desirable alleles from the exotic group were identified, demonstrating the value of expanding the genetic base of US soybean breeding.


Asunto(s)
Glycine max/genética , Sitios de Carácter Cuantitativo , Carácter Cuantitativo Heredable , Mapeo Cromosómico , Cromosomas de las Plantas , Regulación de la Expresión Génica de las Plantas , Genética de Población , Genoma de Planta , Fenotipo , Polimorfismo de Nucleótido Simple
11.
Int J Mol Sci ; 19(7)2018 Jul 23.
Artículo en Inglés | MEDLINE | ID: mdl-30041459

RESUMEN

DNA methylation is an epigenetic modification required for transposable element (TE) silencing, genome stability, and genomic imprinting. Although DNA methylation has been intensively studied, the dynamic nature of methylation among different species has just begun to be understood. Here we summarize the recent progress in research on the wide variation of DNA methylation in different plants, organs, tissues, and cells; dynamic changes of methylation are also reported during plant growth and development as well as changes in response to environmental stresses. Overall DNA methylation is quite diverse among species, and it occurs in CG, CHG, and CHH (H = A, C, or T) contexts of genes and TEs in angiosperms. Moderately expressed genes are most likely methylated in gene bodies. Methylation levels decrease significantly just upstream of the transcription start site and around transcription termination sites; its levels in the promoter are inversely correlated with the expression of some genes in plants. Methylation can be altered by different environmental stimuli such as pathogens and abiotic stresses. It is likely that methylation existed in the common eukaryotic ancestor before fungi, plants and animals diverged during evolution. In summary, DNA methylation patterns in angiosperms are complex, dynamic, and an integral part of genome diversity after millions of years of evolution.


Asunto(s)
Metilación de ADN , Desarrollo de la Planta/genética , Epigénesis Genética , Regulación del Desarrollo de la Expresión Génica , Regulación de la Expresión Génica de las Plantas
12.
Sci Rep ; 8(1): 7882, 2018 May 15.
Artículo en Inglés | MEDLINE | ID: mdl-29760503

RESUMEN

A correction to this article has been published and is linked from the HTML and PDF versions of this paper. The error has not been fixed in the paper.

13.
J Agric Food Chem ; 66(14): 3658-3665, 2018 Apr 11.
Artículo en Inglés | MEDLINE | ID: mdl-29558122

RESUMEN

The level of oleic acid in peanut seed is one of the most important factors in determining seed quality and is controlled by two pairs of homeologous genes ( FAD2A and FAD2B). The genotypes of eight F8 breeding lines were determined as AABB, aaBB, AAbb, and aabb by real-time polymerase chain reaction and sequencing. Fresh seeds were collected from five seed developmental stages and, after drying, were used for chemical analysis. Our results showed that (1) as seeds developed, seed weight, oil content, and oleic acid level significantly increased, whereas four other fatty acid levels decreased, but protein content and another four fatty acid levels did not significantly change, (2) FAD2A/ FAD2B significantly affected fatty acid profiles but not oil and protein contents, and (3) the data were consistent across 2 years. The variability of seed quality traits revealed here will be useful for peanut breeders, farmers, processers, and consumers.


Asunto(s)
Arachis/metabolismo , Ácidos Grasos/metabolismo , Aceite de Cacahuete/química , Proteínas de Plantas/genética , Semillas/crecimiento & desarrollo , Arachis/química , Arachis/genética , Arachis/crecimiento & desarrollo , Ácidos Grasos/química , Genotipo , Fenotipo , Proteínas de Plantas/química , Proteínas de Plantas/metabolismo , Semillas/química , Semillas/genética , Semillas/metabolismo
14.
Plant Biotechnol J ; 16(11): 1825-1835, 2018 11.
Artículo en Inglés | MEDLINE | ID: mdl-29528555

RESUMEN

White mould of soya bean, caused by Sclerotinia sclerotiorum (Lib.) de Bary, is a necrotrophic fungus capable of infecting a wide range of plants. To dissect the genetic architecture of resistance to white mould, a high-density customized single nucleotide polymorphism (SNP) array (52 041 SNPs) was used to genotype two soya bean diversity panels. Combined with resistance variation data observed in the field and greenhouse environments, genome-wide association studies (GWASs) were conducted to identify quantitative trait loci (QTL) controlling resistance against white mould. Results showed that 16 and 11 loci were found significantly associated with resistance in field and greenhouse, respectively. Of these, eight loci localized to previously mapped QTL intervals and one locus had significant associations with resistance across both environments. The expression level changes in genes located in GWAS-identified loci were assessed between partially resistant and susceptible genotypes through a RNA-seq analysis of the stem tissue collected at various time points after inoculation. A set of genes with diverse biological functionalities were identified as strong candidates underlying white mould resistance. Moreover, we found that genomic prediction models outperformed predictions based on significant SNPs. Prediction accuracies ranged from 0.48 to 0.64 for disease index measured in field experiments. The integrative methods, including GWAS, RNA-seq and genomic selection (GS), applied in this study facilitated the identification of causal variants, enhanced our understanding of mechanisms of white mould resistance and provided valuable information regarding breeding for disease resistance through genomic selection in soya bean.


Asunto(s)
Ascomicetos , Resistencia a la Enfermedad/genética , Expresión Génica/genética , Estudio de Asociación del Genoma Completo , Glycine max/genética , Enfermedades de las Plantas/microbiología , Genes de Plantas/genética , Marcadores Genéticos/genética , Desequilibrio de Ligamiento/genética , Enfermedades de las Plantas/inmunología , Polimorfismo de Nucleótido Simple/genética , Sitios de Carácter Cuantitativo/genética , Glycine max/inmunología , Glycine max/microbiología
15.
Sci Rep ; 7(1): 12263, 2017 09 25.
Artículo en Inglés | MEDLINE | ID: mdl-28947812

RESUMEN

Seed development is programmed by expression of many genes in plants. Seed maturation is an important developmental process to soybean seed quality and yield. DNA methylation is a major epigenetic modification regulating gene expression. However, little is known about the dynamic nature of DNA methylation and its effects on gene expression during plant development. Through whole-genome bisulfite sequencing, we showed that DNA methylation went through dynamic changes during seed maturation. An average of 66% CG, 45% CHG and 9% CHH contexts was methylated in cotyledons. CHH methylation levels in cotyledons changed greatly from 6% at the early stage to 11% at the late stage. Transcribed genes were approximately two-fold more likely to be differentially methylated than non-transcribed genes. We identified 40, 66 and 2136 genes containing differentially methylated regions (DMRs) with negative correlation between their expression and methylation in the CG, CHG and CHH contexts, respectively. The majority of the DMR genes in the CHH context were transcriptionally down-regulated as seeds mature: 99% of them during early maturation were down-regulated, and preferentially associated with DNA replication and cell division. The results provide novel insights into the dynamic nature of DNA methylation and its relationship with gene regulation in seed development.


Asunto(s)
Metilación de ADN , ADN de Plantas/metabolismo , Glycine max/crecimiento & desarrollo , Desarrollo de la Planta , Semillas/crecimiento & desarrollo , División Celular , Replicación del ADN , Epigénesis Genética , Regulación de la Expresión Génica de las Plantas , Secuenciación Completa del Genoma
16.
Theor Appl Genet ; 130(12): 2601-2615, 2017 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-28887657

RESUMEN

KEY MESSAGE: Rag6 and Rag3c were delimited to a 49-kb interval on chromosome 8 and a 150-kb interval on chromosome 16, respectively. Structural variants in the exons of candidate genes were identified. The soybean aphid, an invasive species, has significantly threatened soybean production in North America since 2000. Host-plant resistance is known as an ideal management strategy for aphids. Two novel aphid-resistance loci, Rag6 and Rag3c, from Glycine soja 85-32, were previously detected in a 10.5-cM interval on chromosome 8 and a 7.5-cM interval on chromosome 16, respectively. Defining the exact genomic position of these two genes is critical for improving the effectiveness of marker-assisted selection for aphid resistance and for identification of the functional genes. To pinpoint the locations of Rag6 and Rag3c, four populations segregating for Rag6 and Rag3c were used to fine map these two genes. The availability of the Illumina Infinium SoySNP50K/8K iSelect BeadChip, combined with single-nucleotide polymorphism (SNP) markers discovered through the whole-genome re-sequencing of E12901, facilitated the fine mapping process. Rag6 was refined to a 49-kb interval on chromosome 8 with four candidate genes, including three clustered nucleotide-binding site leucine-rich repeat (NBS-LRR) genes and an amine oxidase encoding gene. Rag3c was refined to a 150-kb interval on chromosome 16 with 11 candidate genes, two of which are a LRR gene and a lipase gene. Moreover, by sequencing the whole-genome exome-capture of the resistant source (E12901), structural variants were identified in the exons of the candidate genes of Rag6 and Rag3c. The closely linked SNP markers and the candidate gene information presented in this study will be significant resources for integrating Rag6 and Rag3c into elite cultivars and for future functional genetics studies.


Asunto(s)
Áfidos , Mapeo Cromosómico , Genes de Plantas , Glycine max/genética , Animales , ADN de Plantas/genética , Marcadores Genéticos , Herbivoria , Polimorfismo de Nucleótido Simple
17.
Mol Breed ; 37(1): 8, 2017.
Artículo en Inglés | MEDLINE | ID: mdl-28127254

RESUMEN

North American soybean breeders have successfully developed a large number of elite cultivars with diverse maturity groups (MG) from a small number of ancestral landraces. To understand molecular and genetic basis underlying the large variation in their maturity and flowering times, we integrated pedigree and maturity data of 166 cultivars representing North American soybean breeding. Network analysis and visualization of their pedigree relationships revealed a clear separation of southern and northern soybean breeding programs, suggesting that little genetic exchange occurred between northern (MG 0-IV) and southern cultivars (MG V-VIII). We also analyzed the transcript sequence and expression levels of four major maturity genes (E1 to E4) and revealed their allelic variants in 75 major ancestral landraces and milestone cultivars. We observed that e1-as was the predominant e mutant allele in northern genotypes, followed by e2 and e3. There was no allelic variation at E4. Transcript accumulation of the e2 mutant allele was significantly reduced, which might be caused by its premature stop codon triggering the nonsense-mediated mRNA decay pathway. The large DNA deletion generating the e3 mutant allele also created a gene fusion transcript. The e alleles found in milestone cultivars were traced through pedigrees to their ancestral landraces and geographic origins. Our analysis revealed an approximate correlation between dysfunctional alleles and maturity groups for most of the 75 cultivars. However, single e mutant alleles and their combinations were not sufficient to fully explain their maturity diversity, suggesting that additional genes/alleles are likely involved in regulating maturity time.

18.
Theor Appl Genet ; 129(8): 1577-93, 2016 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-27179525

RESUMEN

KEY MESSAGE: Identification and characterization of a 254-kb genomic deletion on a duplicated chromosome segment that resulted in a low level of palmitic acid in soybean seeds using transcriptome sequencing. A large number of soybean genotypes varying in seed oil composition and content have been identified. Understanding the molecular mechanisms underlying these variations is important for breeders to effectively utilize them as a genetic resource. Through design and application of a bioinformatics approach, we identified nine co-regulated gene clusters by comparing seed transcriptomes of nine soybean genotypes varying in oil composition and content. We demonstrated that four gene clusters in the genotypes M23, Jack and N0304-303-3 coincided with large-scale genome rearrangements. The co-regulated gene clusters in M23 and Jack mapped to a previously described 164-kb deletion and a copy number amplification of the Rhg1 locus, respectively. The coordinately down-regulated gene clusters in N0304-303-3 were caused by a 254-kb deletion containing 19 genes including a fatty acyl-ACP thioesterase B gene (FATB1a). This deletion was associated with reduced palmitic acid content in seeds and was the molecular cause of a previously reported nonfunctional FATB1a allele, fap nc . The M23 and N0304-304-3 deletions were located in duplicated genome segments retained from the Glycine-specific whole genome duplication that occurred 13 million years ago. The homoeologous genes in these duplicated regions shared a strong similarity in both their encoded protein sequences and transcript accumulation levels, suggesting that they may have conserved and important functions in seeds. The functional conservation of homoeologous genes may result in genetic redundancy and gene dosage effects for their associated seed traits, explaining why the large deletion did not cause lethal effects or completely eliminate palmitic acid in N0304-303-3.


Asunto(s)
Glycine max/genética , Semillas/química , Eliminación de Secuencia , Aceite de Soja/química , Biología Computacional , ADN de Plantas/genética , Duplicación de Gen , Perfilación de la Expresión Génica , Reordenamiento Génico , Genes de Plantas , Genoma de Planta , Genotipo , Familia de Multigenes , Ácido Palmítico/química , Glycine max/química , Tioléster Hidrolasas/genética , Transcriptoma
19.
BMC Genomics ; 15: 299, 2014 Apr 23.
Artículo en Inglés | MEDLINE | ID: mdl-24755115

RESUMEN

BACKGROUND: Variation in seed oil composition and content among soybean varieties is largely attributed to differences in transcript sequences and/or transcript accumulation of oil production related genes in seeds. Discovery and analysis of sequence and expression variations in these genes will accelerate soybean oil quality improvement. RESULTS: In an effort to identify these variations, we sequenced the transcriptomes of soybean seeds from nine lines varying in oil composition and/or total oil content. Our results showed that 69,338 distinct transcripts from 32,885 annotated genes were expressed in seeds. A total of 8,037 transcript expression polymorphisms and 50,485 transcript sequence polymorphisms (48,792 SNPs and 1,693 small Indels) were identified among the lines. Effects of the transcript polymorphisms on their encoded protein sequences and functions were predicted. The studies also provided independent evidence that the lack of FAD2-1A gene activity and a non-synonymous SNP in the coding sequence of FAB2C caused elevated oleic acid and stearic acid levels in soybean lines M23 and FAM94-41, respectively. CONCLUSIONS: As a proof-of-concept, we developed an integrated RNA-seq and bioinformatics approach to identify and functionally annotate transcript polymorphisms, and demonstrated its high effectiveness for discovery of genetic and transcript variations that result in altered oil quality traits. The collection of transcript polymorphisms coupled with their predicted functional effects will be a valuable asset for further discovery of genes, gene variants, and functional markers to improve soybean oil quality.


Asunto(s)
Glycine max/genética , Polimorfismo Genético , Aceite de Soja/química , Transcriptoma , Cromosomas de las Plantas , Análisis por Conglomerados , Perfilación de la Expresión Génica , Genotipo , Mutación INDEL , Metabolismo de los Lípidos , Redes y Vías Metabólicas , Familia de Multigenes , Especificidad de Órganos/genética , Fenotipo , Polimorfismo de Nucleótido Simple , Sitios de Carácter Cuantitativo , Semillas/genética , Semillas/metabolismo , Análisis de Secuencia de ARN , Glycine max/metabolismo
20.
PLoS One ; 9(2): e87261, 2014.
Artículo en Inglés | MEDLINE | ID: mdl-24558366

RESUMEN

Germination is a biological process important to plant development and agricultural production. Barley and rice diverged 50 million years ago, but share a similar germination process. To gain insight into the conservation of their underlying gene regulatory programs, we compared transcriptomes of barley and rice at start, middle and end points of germination, and revealed that germination regulated barley and rice genes (BRs) diverged significantly in expression patterns and/or protein sequences. However, BRs with higher protein sequence similarity tended to have more conserved expression patterns. We identified and characterized 316 sets of conserved barley and rice genes (cBRs) with high similarity in both protein sequences and expression patterns, and provided a comprehensive depiction of the transcriptional regulatory program conserved in barley and rice germination at gene, pathway and systems levels. The cBRs encoded proteins involved in a variety of biological pathways and had a wide range of expression patterns. The cBRs encoding key regulatory components in signaling pathways often had diverse expression patterns. Early germination up-regulation of cell wall metabolic pathway and peroxidases, and late germination up-regulation of chromatin structure and remodeling pathways were conserved in both barley and rice. Protein sequence and expression pattern of a gene change quickly if it is not subjected to a functional constraint. Preserving germination-regulated expression patterns and protein sequences of those cBRs for 50 million years strongly suggests that the cBRs are functionally significant and equivalent in germination, and contribute to the ancient characteristics of germination preserved in barley and rice. The functional significance and equivalence of the cBR genes predicted here can serve as a foundation to further characterize their biological functions and facilitate bridging rice and barley germination research with greater confidence.


Asunto(s)
Regulación de la Expresión Génica de las Plantas , Germinación/genética , Hordeum/genética , Oryza/genética , Secuencias Reguladoras de Ácidos Nucleicos , Transcripción Genética , Pared Celular/metabolismo , Cromatina/química , Perfilación de la Expresión Génica , Genes de Plantas , Genes Reguladores , Genoma de Planta , Análisis de Secuencia por Matrices de Oligonucleótidos , Semillas/genética , Transducción de Señal
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...