Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 7 de 7
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
J Pers Med ; 12(11)2022 Nov 08.
Artículo en Inglés | MEDLINE | ID: mdl-36579600

RESUMEN

Amyotrophic lateral sclerosis is a disease affecting upper and lower motor neurons. Although motor neuron death is the core event of ALS pathology, it is increasingly recognized that other tissues and cell types are affected in the disease, making potentially major contributions to the occurrence and progression of pathology. We review here the known cellular and molecular characteristics of muscle tissue affected by ALS. Evidence of toxicity in skeletal muscle tissue is considered, including metabolic dysfunctions, impaired proteostasis, and deficits in muscle regeneration and RNA metabolism. The role of muscle as a secretory organ, and effects on the skeletal muscle secretome are also covered, including the increase in secretion of toxic factors or decrease in essential factors that have consequences for neuronal function and survival.

2.
Cells ; 11(5)2022 03 01.
Artículo en Inglés | MEDLINE | ID: mdl-35269468

RESUMEN

Extracellular vesicles can mediate communication between tissues, affecting the physiological conditions of recipient cells. They are increasingly investigated in Amyotrophic Lateral Sclerosis, the most common form of Motor Neurone Disease, as transporters of misfolded proteins including SOD1, FUS, TDP43, or other neurotoxic elements, such as the dipeptide repeats resulting from C9orf72 expansions. EVs are classified based on their biogenesis and size and can be separated by differential centrifugation. They include exosomes, released by the fusion of multivesicular bodies with the plasma membrane, and ectosomes, also known as microvesicles or microparticles, resulting from budding or pinching of the plasma membrane. In the current study, EVs were obtained from the myotube cell culture medium of ALS patients or healthy controls. EVs of two different sizes, separating at 20,000 or 100,000 g, were then compared in terms of their effects on recipient motor neurons, astrocytes, and myotubes. Compared to untreated cells, the smaller, exosome-like vesicles of ALS patients reduced the survival of motor neurons by 31% and of myotubes by 18%, decreased neurite length and branching, and increased the proportion of stellate astrocytes, whereas neither those of healthy subjects, nor larger EVs of ALS or healthy subjects, had such effects.


Asunto(s)
Esclerosis Amiotrófica Lateral , Exosomas , Vesículas Extracelulares , Síndromes de Neurotoxicidad , Esclerosis Amiotrófica Lateral/metabolismo , Exosomas/metabolismo , Vesículas Extracelulares/metabolismo , Humanos , Neuronas Motoras/metabolismo , Fibras Musculares Esqueléticas/metabolismo
3.
J Cachexia Sarcopenia Muscle ; 13(2): 1385-1402, 2022 04.
Artículo en Inglés | MEDLINE | ID: mdl-35194965

RESUMEN

BACKGROUND: The cause of the motor neuron (MN) death that drives terminal pathology in amyotrophic lateral sclerosis (ALS) remains unknown, and it is thought that the cellular environment of the MN may play a key role in MN survival. Several lines of evidence implicate vesicles in ALS, including that extracellular vesicles may carry toxic elements from astrocytes towards MNs, and that pathological proteins have been identified in circulating extracellular vesicles of sporadic ALS patients. Because MN degeneration at the neuromuscular junction is a feature of ALS, and muscle is a vesicle-secretory tissue, we hypothesized that muscle vesicles may be involved in ALS pathology. METHODS: Sporadic ALS patients were confirmed to be ALS according to El Escorial criteria and were genotyped to test for classic gene mutations associated with ALS, and physical function was assessed using the ALSFRS-R score. Muscle biopsies of either mildly affected deltoids of ALS patients (n = 27) or deltoids of aged-matched healthy subjects (n = 30) were used for extraction of muscle stem cells, to perform immunohistology, or for electron microscopy. Muscle stem cells were characterized by immunostaining, RT-qPCR, and transcriptomic analysis. Secreted muscle vesicles were characterized by proteomic analysis, Western blot, NanoSight, and electron microscopy. The effects of muscle vesicles isolated from the culture medium of ALS and healthy myotubes were tested on healthy human-derived iPSC MNs and on healthy human myotubes, with untreated cells used as controls. RESULTS: An accumulation of multivesicular bodies was observed in muscle biopsies of sporadic ALS patients by immunostaining and electron microscopy. Study of muscle biopsies and biopsy-derived denervation-naïve differentiated muscle stem cells (myotubes) revealed a consistent disease signature in ALS myotubes, including intracellular accumulation of exosome-like vesicles and disruption of RNA-processing. Compared with vesicles from healthy control myotubes, when administered to healthy MNs the vesicles of ALS myotubes induced shortened, less branched neurites, cell death, and disrupted localization of RNA and RNA-processing proteins. The RNA-processing protein FUS and a majority of its binding partners were present in ALS muscle vesicles, and toxicity was dependent on the expression level of FUS in recipient cells. Toxicity to recipient MNs was abolished by anti-CD63 immuno-blocking of vesicle uptake. CONCLUSIONS: ALS muscle vesicles are shown to be toxic to MNs, which establishes the skeletal muscle as a potential source of vesicle-mediated toxicity in ALS.


Asunto(s)
Esclerosis Amiotrófica Lateral , Células Madre Pluripotentes Inducidas , Anciano , Esclerosis Amiotrófica Lateral/genética , Humanos , Células Madre Pluripotentes Inducidas/metabolismo , Células Madre Pluripotentes Inducidas/patología , Neuronas Motoras/metabolismo , Células Musculares/metabolismo , Proteómica
4.
Cells ; 10(11)2021 10 28.
Artículo en Inglés | MEDLINE | ID: mdl-34831153

RESUMEN

Intercellular communication between neurons and their surrounding cells occurs through the secretion of soluble molecules or release of vesicles such as exosomes into the extracellular space, participating in brain homeostasis. Under neuro-degenerative conditions associated with ageing, such as amyotrophic lateral sclerosis (ALS), Alzheimer's or Parkinson's disease, exosomes are suspected to propagate toxic proteins. The topic of this review is the role of exosomes in ageing conditions and more specifically in ALS. Our current understanding of exosomes and exosome-related mechanisms is first summarized in a general sense, including their biogenesis and secretion, heterogeneity, cellular interaction and intracellular fate. Their role in the Central Nervous System (CNS) and ageing of the neuromotor system is then considered in the context of exosome-induced signaling. The review then focuses on exosomes in age-associated neurodegenerative disease. The role of exosomes in ALS is highlighted, and their use as potential biomarkers to diagnose and prognose ALS is presented. The therapeutic implications of exosomes for ALS are considered, whether as delivery vehicles, neurotoxic targets or as corrective drugs in and of themselves. A diverse set of mechanisms underpin the functional roles, both confirmed and potential, of exosomes, generally in ageing and specifically in motor neurone disease. Aspects of their contents, biogenesis, uptake and modifications offer many plausible routes towards the development of novel biomarkers and therapeutics.


Asunto(s)
Envejecimiento/metabolismo , Biomarcadores/metabolismo , Exosomas/metabolismo , Enfermedad de la Neurona Motora/metabolismo , Animales , Humanos , Degeneración Nerviosa/terapia , Transducción de Señal
5.
J Pers Med ; 10(3)2020 Aug 25.
Artículo en Inglés | MEDLINE | ID: mdl-32854276

RESUMEN

Amyotrophic lateral sclerosis (ALS) is a terminal late-onset condition characterized by the loss of upper and lower motor neurons. Mutations in more than 30 genes are associated to the disease, but these explain only ~20% of cases. The molecular functions of these genes implicate a wide range of cellular processes in ALS pathology, a cohesive understanding of which may provide clues to common molecular mechanisms across both familial (inherited) and sporadic cases and could be key to the development of effective therapeutic approaches. Here, the different pathways that have been investigated in ALS are summarized, discussing in detail: mitochondrial dysfunction, oxidative stress, axonal transport dysregulation, glutamate excitotoxicity, endosomal and vesicular transport impairment, impaired protein homeostasis, and aberrant RNA metabolism. This review considers the mechanistic roles of ALS-associated genes in pathology, viewed through the prism of shared molecular pathways.

6.
Skelet Muscle ; 10(1): 20, 2020 07 08.
Artículo en Inglés | MEDLINE | ID: mdl-32641118

RESUMEN

Skeletal muscle is increasingly considered an endocrine organ secreting myokines and extracellular vesicles (exosomes and microvesicles), which can affect physiological changes with an impact on different pathological conditions, including regenerative processes, aging, and myopathies. Primary human myoblasts are an essential tool to study the muscle vesicle secretome. Since their differentiation in conditioned media does not induce any signs of cell death or cell stress, artefactual effects from those processes are unlikely. However, adult human primary myoblasts senesce in long-term tissue culture, so a major technical challenge is posed by the need to avoid artefactual effects resulting from pre-senescent changes. Since these cells should be studied within a strictly controlled pre-senescent division count (<21 divisions), and yields of myoblasts per muscle biopsy are low, it is difficult or impossible to amplify sufficiently large cell numbers (some 250 × 106 myoblasts) to obtain sufficient conditioned medium for the standard ultracentrifugation approach to exosome isolation.Thus, an optimized strategy to extract and study secretory muscle vesicles is needed. In this study, conditions are optimized for the in vitro cultivation of human myoblasts, and the quality and yield of exosomes extracted using an ultracentrifugation protocol are compared with a modified polymer-based precipitation strategy combined with extra washing steps. Both vesicle extraction methods successfully enriched exosomes, as vesicles were positive for CD63, CD82, CD81, floated at identical density (1.15-1.27 g.ml-1), and exhibited similar size and cup-shape using electron microscopy and NanoSight tracking. However, the modified polymer-based precipitation was a more efficient strategy to extract exosomes, allowing their extraction in sufficient quantities to explore their content or to isolate a specific subpopulation, while requiring >30 times fewer differentiated myoblasts than what is required for the ultracentrifugation method. In addition, exosomes could still be integrated into recipient cells such as human myotubes or iPSC-derived motor neurons.Modified polymer-based precipitation combined with extra washing steps optimizes exosome yield from a lower number of differentiated myoblasts and less conditioned medium, avoiding senescence and allowing the execution of multiple experiments without exhausting the proliferative capacity of the myoblasts.


Asunto(s)
Fraccionamiento Celular/métodos , Exosomas/metabolismo , Mioblastos/metabolismo , Cultivo Primario de Células/métodos , Células Cultivadas , Humanos
7.
Curr Med Chem ; 27(2): 258-281, 2020.
Artículo en Inglés | MEDLINE | ID: mdl-30324875

RESUMEN

The number of obese patients undergoing cardiac and noncardiac surgery is rapidly increasing because they are more prone to concomitant diseases, such as diabetes, thrombosis, sleep-disordered breathing, cardiovascular and cerebrovascular disorders. Even if guidelines are already available to manage anesthesia and surgery of obese patients, the assessment of the perioperative morbidity and mortality from heart and brain disorders in morbidly obese surgical patients will be challenging in the next years. The present review will recapitulate the new mechanisms underlying the Heart-brain Axis (HBA) vulnerability during the perioperative period in healthy and morbidly obese patients. Finally, we will describe the nutrigenomics approach, an emerging noninvasive dietary tool, to maintain a healthy body weight and to minimize the HBA propensity to injury in obese individuals undergoing all types of surgery by personalized intake of plant compounds that may regulate the switch from health to disease in an epigenetic manner. Our review provides current insights into the mechanisms underlying HBA response in obese surgical patients and how they are modulated by epigenetically active food constituents.


Asunto(s)
Nutrigenómica , Arritmias Cardíacas , Encéfalo , Humanos , Obesidad Mórbida , Complicaciones Posoperatorias
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...