Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 12 de 12
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Nature ; 622(7982): 393-401, 2023 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-37821590

RESUMEN

Recent human decedent model studies1,2 and compassionate xenograft use3 have explored the promise of porcine organs for human transplantation. To proceed to human studies, a clinically ready porcine donor must be engineered and its xenograft successfully tested in nonhuman primates. Here we describe the design, creation and long-term life-supporting function of kidney grafts from a genetically engineered porcine donor transplanted into a cynomolgus monkey model. The porcine donor was engineered to carry 69 genomic edits, eliminating glycan antigens, overexpressing human transgenes and inactivating porcine endogenous retroviruses. In vitro functional analyses showed that the edited kidney endothelial cells modulated inflammation to an extent that was indistinguishable from that of human endothelial cells, suggesting that these edited cells acquired a high level of human immune compatibility. When transplanted into cynomolgus monkeys, the kidneys with three glycan antigen knockouts alone experienced poor graft survival, whereas those with glycan antigen knockouts and human transgene expression demonstrated significantly longer survival time, suggesting the benefit of human transgene expression in vivo. These results show that preclinical studies of renal xenotransplantation could be successfully conducted in nonhuman primates and bring us closer to clinical trials of genetically engineered porcine renal grafts.


Asunto(s)
Rechazo de Injerto , Trasplante de Riñón , Macaca fascicularis , Porcinos , Trasplante Heterólogo , Animales , Humanos , Animales Modificados Genéticamente , Células Endoteliales/inmunología , Células Endoteliales/metabolismo , Rechazo de Injerto/inmunología , Rechazo de Injerto/prevención & control , Trasplante de Riñón/métodos , Polisacáridos/deficiencia , Porcinos/genética , Trasplante Heterólogo/métodos , Transgenes/genética
2.
Proc Natl Acad Sci U S A ; 115(9): E2040-E2047, 2018 02 27.
Artículo en Inglés | MEDLINE | ID: mdl-29440496

RESUMEN

Harnessing CRISPR-Cas9 technology provides an unprecedented ability to modify genomic loci via DNA double-strand break (DSB) induction and repair. We analyzed nonhomologous end-joining (NHEJ) repair induced by Cas9 in budding yeast and found that the orientation of binding of Cas9 and its guide RNA (gRNA) profoundly influences the pattern of insertion/deletions (indels) at the site of cleavage. A common indel created by Cas9 is a 1-bp (+1) insertion that appears to result from Cas9 creating a 1-nt 5' overhang that is filled in by a DNA polymerase and ligated. The origin of +1 insertions was investigated by using two gRNAs with PAM sequences located on opposite DNA strands but designed to cleave the same sequence. These templated +1 insertions are dependent on the X-family DNA polymerase, Pol4. Deleting Pol4 also eliminated +2 and +3 insertions, which are biased toward homonucleotide insertions. Using inverted PAM sequences, we also found significant differences in overall NHEJ efficiency and repair profiles, suggesting that the binding of the Cas9:gRNA complex influences subsequent NHEJ processing. As with events induced by the site-specific HO endonuclease, CRISPR-Cas9-mediated NHEJ repair depends on the Ku heterodimer and DNA ligase 4. Cas9 events are highly dependent on the Mre11-Rad50-Xrs2 complex, independent of Mre11's nuclease activity. Inspection of the outcomes of a large number of Cas9 cleavage events in mammalian cells reveals a similar templated origin of +1 insertions in human cells, but also a significant frequency of similarly templated +2 insertions.


Asunto(s)
Sistemas CRISPR-Cas , Cromosomas/ultraestructura , Roturas del ADN de Doble Cadena , Mutación INDEL , ARN Guía de Kinetoplastida , Saccharomycetales/genética , Reparación del ADN por Unión de Extremidades , ADN Ligasa (ATP)/metabolismo , Reparación del ADN , Proteínas de Unión al ADN/metabolismo , Dimerización , Endonucleasas/metabolismo , Eliminación de Gen , Autoantígeno Ku , Plásmidos/metabolismo , Regiones Promotoras Genéticas , Análisis de Secuencia de ADN
3.
Nucleic Acids Res ; 45(8): 4519-4531, 2017 05 05.
Artículo en Inglés | MEDLINE | ID: mdl-28175398

RESUMEN

Trinucleotide repeats are a source of genome instability, causing replication fork stalling, chromosome fragility, and impaired repair. Specialized helicases play an important role in unwinding DNA structures to maintain genome stability. The Srs2 helicase unwinds DNA hairpins, facilitates replication, and prevents repeat instability and fragility. However, since Srs2 is a multifunctional protein with helicase activity and the ability to displace Rad51 recombinase, it was unclear which functions were required for its various protective roles. Here, using SRS2 separation-of-function alleles, we show that in the absence of Srs2 recruitment to PCNA or in helicase-deficient mutants, breakage at a CAG/CTG repeat increases. We conclude that Srs2 interaction with PCNA allows the helicase activity to unwind fork-blocking CAG/CTG hairpin structures to prevent breaks. Independently of PCNA binding, Srs2 also displaces Rad51 from nascent strands to prevent recombination-dependent repeat expansions and contractions. By 2D gel electrophoresis, we detect two different kinds of structured intermediates or joint molecules (JMs). Some JMs are Rad51-independent and exhibit properties of reversed forks, including being processed by the Exo1 nuclease. In addition, in a helicase-deficient mutant, Rad51-dependent JMs are detected, probably corresponding to recombination between sisters. These results clarify the many roles of Srs2 in facilitating replication through fork-blocking hairpin lesions.


Asunto(s)
ADN Helicasas/genética , Replicación del ADN , ADN de Hongos/genética , Genoma Fúngico , Antígeno Nuclear de Célula en Proliferación/genética , Recombinasa Rad51/genética , Proteínas de Saccharomyces cerevisiae/genética , Saccharomyces cerevisiae/genética , Alelos , Fragilidad Cromosómica , ADN Helicasas/metabolismo , ADN de Hongos/metabolismo , Electroforesis en Gel Bidimensional , Exodesoxirribonucleasas/genética , Exodesoxirribonucleasas/metabolismo , Inestabilidad Genómica , Secuencias Invertidas Repetidas , Antígeno Nuclear de Célula en Proliferación/metabolismo , Unión Proteica , Recombinasa Rad51/metabolismo , Saccharomyces cerevisiae/metabolismo , Proteínas de Saccharomyces cerevisiae/metabolismo , Repeticiones de Trinucleótidos
4.
Genetics ; 203(1): 147-57, 2016 05.
Artículo en Inglés | MEDLINE | ID: mdl-26920759

RESUMEN

Double-strand DNA breaks occur upon exposure of cells to ionizing radiation and certain chemical agents or indirectly through replication fork collapse at DNA damage sites. If left unrepaired, double-strand breaks can cause genome instability and cell death, and their repair can result in loss of heterozygosity. In response to DNA damage, proteins involved in double-strand break repair by homologous recombination relocalize into discrete nuclear foci. We identified 29 proteins that colocalize with recombination repair protein Rad52 in response to DNA damage. Of particular interest, Ygr042w/Mte1, a protein of unknown function, showed robust colocalization with Rad52. Mte1 foci fail to form when the DNA helicase gene MPH1 is absent. Mte1 and Mph1 form a complex and are recruited to double-strand breaks in vivo in a mutually dependent manner. MTE1 is important for resolution of Rad52 foci during double-strand break repair and for suppressing break-induced replication. Together our data indicate that Mte1 functions with Mph1 in double-strand break repair.


Asunto(s)
ARN Helicasas DEAD-box/metabolismo , Roturas del ADN de Doble Cadena , Reparación del ADN , Proteínas de Unión a Telómeros/metabolismo , ARN Helicasas DEAD-box/genética , Daño del ADN , Replicación del ADN , Proteínas de Unión al ADN/genética , Proteínas de Unión al ADN/metabolismo , Recombinación Homóloga , Unión Proteica , Transporte de Proteínas , Proteína Recombinante y Reparadora de ADN Rad52/metabolismo , Proteínas de Unión a Telómeros/genética
5.
Genes Dev ; 28(21): 2394-406, 2014 Nov 01.
Artículo en Inglés | MEDLINE | ID: mdl-25367035

RESUMEN

Recent high-resolution genome analyses of cancer and other diseases have revealed the occurrence of microhomology-mediated chromosome rearrangements and copy number changes. Although some of these rearrangements appear to involve nonhomologous end-joining, many must have involved mechanisms requiring new DNA synthesis. Models such as microhomology-mediated break-induced replication (MM-BIR) have been invoked to explain these rearrangements. We examined BIR and template switching between highly diverged sequences in Saccharomyces cerevisiae, induced during repair of a site-specific double-strand break (DSB). Our data show that such template switches are robust mechanisms that give rise to complex rearrangements. Template switches between highly divergent sequences appear to be mechanistically distinct from the initial strand invasions that establish BIR. In particular, such jumps are less constrained by sequence divergence and exhibit a different pattern of microhomology junctions. BIR traversing repeated DNA sequences frequently results in complex translocations analogous to those seen in mammalian cells. These results suggest that template switching among repeated genes is a potent driver of genome instability and evolution.


Asunto(s)
Repeticiones de Microsatélite/genética , Recombinación Genética/genética , Saccharomyces cerevisiae/genética , Reparación del ADN/genética , Replicación del ADN/genética , Evolución Molecular , Conversión Génica , Inestabilidad Genómica/genética , Proteínas de Saccharomyces cerevisiae/genética , Moldes Genéticos , Translocación Genética/genética
6.
Cold Spring Harb Perspect Biol ; 5(12): a010397, 2013 Dec 01.
Artículo en Inglés | MEDLINE | ID: mdl-23881940

RESUMEN

Recombination-dependent DNA replication, often called break-induced replication (BIR), was initially invoked to explain recombination events in bacteriophage but it has recently been recognized as a fundamentally important mechanism to repair double-strand chromosome breaks in eukaryotes. This mechanism appears to be critically important in the restarting of stalled and broken replication forks and in maintaining the integrity of eroded telomeres. Although BIR helps preserve genome integrity during replication, it also promotes genome instability by the production of loss of heterozygosity and the formation of nonreciprocal translocations, as well as in the generation of complex chromosomal rearrangements.


Asunto(s)
Reparación del ADN , Escherichia coli/genética , Recombinación Genética , Telómero/metabolismo , Levaduras/genética , Bacteriófagos/genética , Bacteriófagos/metabolismo , ADN Bacteriano/biosíntesis , ADN Bacteriano/genética , ADN de Hongos/biosíntesis , ADN de Hongos/genética , Escherichia coli/metabolismo , Inestabilidad Genómica , Translocación Genética , Levaduras/metabolismo
7.
Biochim Biophys Acta ; 1824(4): 589-97, 2012 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-22289630

RESUMEN

Plasmodium falciparum adenylosuccinate synthetase, a homodimeric enzyme, contains 10 cysteine residues per subunit. Among these, Cys250, Cys328 and Cys368 lie at the dimer interface and are not conserved across organisms. PfAdSS has a positively charged interface with the crystal structure showing additional electron density around Cys328 and Cys368. Biochemical characterization of site directed mutants followed by equilibrium unfolding studies permits elucidation of the role of interface cysteines and positively charged interface in dimer stability. Mutation of interface cysteines, Cys328 and Cys368 to serine, perturbed the monomer-dimer equilibrium in the protein with a small population of monomer being evident in the double mutant. Introduction of negative charge in the form of C328D mutation resulted in stabilization of protein dimer as evident by size exclusion chromatography at high ionic strength buffer and equilibrium unfolding in the presence of urea. These observations suggest that cysteines at the dimer interface of PfAdSS may indeed be charged and exist as thiolate anion.


Asunto(s)
Adenilosuccinato Sintasa/genética , Cisteína/genética , Mutagénesis Sitio-Dirigida , Plasmodium falciparum/enzimología , Proteínas Protozoarias/genética , Adenilosuccinato Sintasa/química , Adenilosuccinato Sintasa/aislamiento & purificación , Sustitución de Aminoácidos , Cromatografía en Gel , Cobre/química , Cisteína/química , Estabilidad de Enzimas , Ácido Yodoacético/química , Cinética , Manganeso/química , Modelos Moleculares , Desnaturalización Proteica , Pliegue de Proteína , Dominios y Motivos de Interacción de Proteínas , Estructura Cuaternaria de Proteína , Estructura Secundaria de Proteína , Subunidades de Proteína/química , Subunidades de Proteína/genética , Proteínas Protozoarias/química , Proteínas Protozoarias/aislamiento & purificación , Triptófano/química , Urea/química
8.
Nucleic Acids Res ; 40(3): 1091-105, 2012 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-21984413

RESUMEN

DNA sequences that form secondary structures or bind protein complexes are known barriers to replication and potential inducers of genome instability. In order to determine which helicases facilitate DNA replication across these barriers, we analyzed fork progression through them in wild-type and mutant yeast cells, using 2-dimensional gel-electrophoretic analysis of the replication intermediates. We show that the Srs2 protein facilitates replication of hairpin-forming CGG/CCG repeats and prevents chromosome fragility at the repeat, whereas it does not affect replication of G-quadruplex forming sequences or a protein-bound repeat. Srs2 helicase activity is required for hairpin unwinding and fork progression. Also, the PCNA binding domain of Srs2 is required for its in vivo role of replication through hairpins. In contrast, the absence of Sgs1 or Pif1 helicases did not inhibit replication through structural barriers, though Pif1 did facilitate replication of a telomeric protein barrier. Interestingly, replication through a protein barrier but not a DNA structure barrier was modulated by nucleotide pool levels, illuminating a different mechanism by which cells can regulate fork progression through protein-mediated stall sites. Our analyses reveal fundamental differences in the replication of DNA structural versus protein barriers, with Srs2 helicase activity exclusively required for fork progression through hairpin structures.


Asunto(s)
ADN Helicasas/fisiología , Replicación del ADN , Rotura Cromosómica , ADN/química , ADN Helicasas/metabolismo , Proteínas de Unión al ADN/metabolismo , G-Cuádruplex , Conformación de Ácido Nucleico , Antígeno Nuclear de Célula en Proliferación/metabolismo , RecQ Helicasas/fisiología , Secuencias Repetitivas de Ácidos Nucleicos , Proteínas de Saccharomyces cerevisiae/metabolismo , Proteínas de Saccharomyces cerevisiae/fisiología , Telómero/metabolismo
9.
Nat Struct Mol Biol ; 16(2): 159-67, 2009 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-19136956

RESUMEN

Several molecular mechanisms have been proposed to explain trinucleotide repeat expansions. Here we show that in yeast srs2Delta cells, CTG repeats undergo both expansions and contractions, and they show increased chromosomal fragility. Deletion of RAD52 or RAD51 suppresses these phenotypes, suggesting that recombination triggers trinucleotide repeat instability in srs2Delta cells. In sgs1Delta cells, CTG repeats undergo contractions and increased fragility by a mechanism partially dependent on RAD52 and RAD51. Analysis of replication intermediates revealed abundant joint molecules at the CTG repeats during S phase. These molecules migrate similarly to reversed replication forks, and their presence is dependent on SRS2 and SGS1 but not RAD51. Our results suggest that Srs2 promotes fork reversal in repetitive sequences, preventing repeat instability and fragility. In the absence of Srs2 or Sgs1, DNA damage accumulates and is processed by homologous recombination, triggering repeat rearrangements.


Asunto(s)
Rotura Cromosómica , ADN Helicasas/metabolismo , RecQ Helicasas/metabolismo , Proteínas de Saccharomyces cerevisiae/metabolismo , Saccharomyces cerevisiae/metabolismo , Fragilidad Cromosómica , ADN Helicasas/genética , Replicación del ADN , Eliminación de Gen , Humanos , Recombinasa Rad51/genética , Recombinasa Rad51/metabolismo , Proteína Recombinante y Reparadora de ADN Rad52/genética , Proteína Recombinante y Reparadora de ADN Rad52/metabolismo , RecQ Helicasas/genética , Recombinación Genética , Proteínas de Saccharomyces cerevisiae/genética , Repeticiones de Trinucleótidos
10.
FEBS J ; 272(8): 1900-11, 2005 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-15819884

RESUMEN

Hypoxanthine guanine phosphoribosyltransferases (HGPRTs) catalyze the conversion of 6-oxopurine bases to their respective nucleotides, the phosphoribosyl group being derived from phosphoribosyl pyrophosphate. Recombinant Plasmodium falciparum HGPRT, on purification, has negligible activity, and previous reports have shown that high activities can be achieved upon incubation of recombinant enzyme with the substrates hypoxanthine and phosphoribosyl pyrophosphate [Keough DT, Ng AL, Winzor DJ, Emmerson BT & de Jersey J (1999) Mol Biochem Parasitol98, 29-41; Sujay Subbayya IN & Balaram H (2000) Biochem Biophys Res Commun279, 433-437]. In this report, we show that activation is effected by the product, Inosine monophosphate (IMP), and not by the substrates. Studies carried out on Plasmodium falciparum HGPRT and on a temperature-sensitive mutant, L44F, show that the enzymes are destabilized in the presence of the substrates and the product, IMP. These stability studies suggest that the active, product-bound form of the enzyme is less stable than the ligand-free, unactivated enzyme. Equilibrium isothermal-unfolding studies indicate that the active form is destabilized by 2-3 kcal x mol(-1) compared with the unactivated state. This presents a unique example of an enzyme that attains its active conformation of lower stability by product binding. This property of ligand-mediated activation is not seen with recombinant human HGPRT, which is highly active in the unliganded state. The reversibility between highly active and weakly active states suggests a novel mechanism for the regulation of enzyme activity in P. falciparum.


Asunto(s)
Hipoxantina Fosforribosiltransferasa/química , Hipoxantina Fosforribosiltransferasa/metabolismo , Plasmodium falciparum/enzimología , Animales , Dicroismo Circular , Activación Enzimática , Estabilidad de Enzimas , Guanidina/farmacología , Humanos , Hipoxantina/química , Hipoxantina/metabolismo , Hipoxantina Fosforribosiltransferasa/genética , Inosina Monofosfato/química , Inosina Monofosfato/metabolismo , Modelos Moleculares , Plasmodium falciparum/genética , Conformación Proteica/efectos de los fármacos , Desnaturalización Proteica/efectos de los fármacos , Pliegue de Proteína , Temperatura , Termodinámica
11.
Mol Biochem Parasitol ; 138(1): 1-8, 2004 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-15500910

RESUMEN

Adenylosuccinate synthetase (AdSS) catalyses the Mg(2+) dependent formation of adenylosuccinate from IMP and aspartate, the reaction being driven by the hydrolysis of GTP to GDP. All characterized AdSS thus far exhibit a random kinetic mechanism. We present here kinetic evidence that unlike all other AdSS, Plasmodium falciparum AdSS (PfAdSS) has ordered substrate binding. Inhibition studies show that binding of GTP requires IMP binding while aspartate binds to the enzyme-IMP-GTP complex. A structural basis for this difference in mechanism is presented. Kinetically, PfAdSS is closer to the mouse acidic isozyme rather than to the mouse basic isozyme. The mouse acidic isozyme is thought to play a role in the purine nucleotide biosynthetic pathway. Regulation of PfAdSS in vivo can therefore, be expected to be similar to the mouse acidic isozyme, in agreement with the role of PfAdSS as the only pathway for the synthesis of adenine nucleotides in the parasite. However, PfAdSS differs from both the mammalian homologs in that fructose-1,6-bisphosphate, a potent inhibitor of the mammalian enzyme, is an activator of PfAdSS. The differences highlighted here are promising in terms of species-specific drug design, targeting this essential enzyme in the parasite.


Asunto(s)
Adenilosuccinato Sintasa/metabolismo , Plasmodium falciparum/enzimología , Adenilosuccinato Sintasa/antagonistas & inhibidores , Adenilosuccinato Sintasa/química , Animales , Unión Competitiva , Activación Enzimática , Fructosadifosfatos/farmacología , Cinética , Modelos Moleculares , Purinas/metabolismo
12.
Arch Biochem Biophys ; 427(1): 116-22, 2004 Jul 01.
Artículo en Inglés | MEDLINE | ID: mdl-15178494

RESUMEN

Human hypoxanthine guanine phosphoribosyltransferase (HGPRT) lacks the ability to phosphoribosylate xanthine, a property exhibited by HGPRTs from many parasitic protozoa. Using random mutagenesis we have obtained a mutant, F36L, of human HGPRT that phosphoribosylates xanthine. Examination of the structure indicates that F36 does not make direct contact with the purine, but long-range modulation via loop IV, a segment contacting purine at C2 position, could influence substrate specificity. Expanded substrate specificity to include xanthine probably arises from increased flexibility of loop IV as a consequence of mutation at F36. Mutation of the corresponding residue, L44 in Plasmodium falciparum HGPRT, also results in alteration of K(m) and k(cat) for xanthine, substantiating its role in affecting purine base affinity. Our studies show that mutation of this residue in the core of the protein also affects the stability of both enzymes.


Asunto(s)
Hipoxantina Fosforribosiltransferasa/metabolismo , Animales , Secuencia de Bases , Sitios de Unión , Cartilla de ADN , Humanos , Hipoxantina Fosforribosiltransferasa/química , Hipoxantina Fosforribosiltransferasa/genética , Cinética , Modelos Moleculares , Mutagénesis Sitio-Dirigida , Plasmodium falciparum/enzimología , Conformación Proteica , Especificidad por Sustrato
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...