Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 16 de 16
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Bioresour Technol ; 369: 128370, 2023 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-36423765

RESUMEN

Astaxanthin is used extensively in the nutraceutical, aquaculture, and cosmetic industries. The current market necessitates higher astaxanthin production from Phaffia rhodozyma (P. rhodozyma) due to its higher cost compared to chemical synthesis. In this study, a bubble discharge reactor was developed to generate plasma-activated water (PAW) to produce PAW-made yeast malt (YM) medium. Due to oxidative stress induced by PAW, strains cultured in 15 and 30 min-treated PAW-made medium produced 7.9 ± 1.2 % and 12.6 ± 1.4 % more carotenoids with 15.5 ± 3.3 % and 22.1 ± 1.3 % more astaxanthin, respectively. Reactive oxygen species (ROS) assay results showed that ROS generated by plasma-water interactions elevated intracellular ROS levels. Proteomic analysis revealed increased expression of proteins involved in the cellular response to oxidative stress as well as carotenoid biosynthesis, both of which contribute to higher yields of astaxanthin. Overall, this study supports the potential of PAW to increase astaxanthin yields for industrial-scale production.


Asunto(s)
Basidiomycota , Proteómica , Especies Reactivas de Oxígeno/metabolismo , Basidiomycota/metabolismo , Estrés Oxidativo , Saccharomyces cerevisiae
2.
Sci Rep ; 12(1): 7560, 2022 05 09.
Artículo en Inglés | MEDLINE | ID: mdl-35534598

RESUMEN

This work reveals a versatile new method to produce films with antimicrobial properties that can also bond materials together with robust tensile adhesive strength. Specifically, we demonstrate the formation of coatings by using a dielectric barrier discharge (DBD) plasma to convert a liquid small-molecule precursor, m-cresol, to a solid film via plasma-assisted on-surface polymerisation. The films are quite appealing from a sustainability perspective: they are produced using a low-energy process and from a molecule produced in abundance as a by-product of coal tar processing. This process consumes only 1.5 Wh of electricity to create a 1 cm2 film, which is much lower than other methods commonly used for film deposition, such as chemical vapour deposition (CVD). Plasma treatments were performed in plain air without the need for any carrier or precursor gas, with a variety of exposure durations. By varying the plasma parameters, it is possible to modify both the adhesive property of the film, which is at a maximum at a 1 min plasma exposure, and the antimicrobial property of the film against Escherichia coli, which is at a maximum at a 30 s exposure.


Asunto(s)
Adhesivos , Antiinfecciosos , Antibacterianos/química , Antibacterianos/farmacología , Antiinfecciosos/farmacología , Cresoles , Escherichia coli
3.
J Neurochem ; 157(6): 1876-1896, 2021 06.
Artículo en Inglés | MEDLINE | ID: mdl-32978815

RESUMEN

The olfactory system is a driver of feeding behavior, whereby olfactory acuity is modulated by the metabolic state of the individual. The excitability of the major output neurons of the olfactory bulb (OB) can be modulated through targeting a voltage-dependent potassium channel, Kv1.3, which responds to changes in metabolic factors such as insulin, glucose, and glucagon-like peptide-1. Because gene-targeted deletion or inhibition of Kv1.3 in the periphery has been found to increase energy metabolism and decrease body weight, we hypothesized that inhibition of Kv1.3 selectively in the OB could enhance excitability of the output neurons to evoke changes in energy homeostasis. We thereby employed metal-histidine coordination to self-assemble the Kv1.3 inhibitor margatoxin (MgTx) to fluorescent quantum dots (QDMgTx) as a means to label cells in vivo and test changes in neuronal excitability and metabolism when delivered to the OB. Using patch-clamp electrophysiology to measure Kv1.3 properties in heterologously expressed cells and native mitral cells in OB slices, we found that QDMgTx had a fast rate of inhibition, but with a reduced IC50, and increased action potential firing frequency. QDMgTx was capable of labeling cloned Kv1.3 channels but was not visible when delivered to native Kv1.3 in the OB. Diet-induced obese mice were observed to reduce body weight and clear glucose more quickly following osmotic mini-pump delivery of QDMgTx/MgTx to the OB, and following MgTx delivery, they increased the use of fats as fuels (reduced respiratory exchange ratio). These results suggest that enhanced excitability of bulbar output neurons can drive metabolic responses.


Asunto(s)
Metabolismo Energético/fisiología , Canal de Potasio Kv1.3/antagonistas & inhibidores , Canal de Potasio Kv1.3/metabolismo , Obesidad/metabolismo , Bulbo Olfatorio/metabolismo , Puntos Cuánticos/metabolismo , Animales , Dieta Alta en Grasa/efectos adversos , Relación Dosis-Respuesta a Droga , Metabolismo Energético/efectos de los fármacos , Femenino , Canal de Potasio Kv1.3/análisis , Masculino , Ratones , Ratones Endogámicos C57BL , Ratones Obesos , Obesidad/tratamiento farmacológico , Obesidad/etiología , Bulbo Olfatorio/química , Bulbo Olfatorio/efectos de los fármacos , Puntos Cuánticos/análisis , Venenos de Escorpión/farmacología , Venenos de Escorpión/uso terapéutico
4.
J Biomol Struct Dyn ; 38(5): 1388-1397, 2020 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-31038412

RESUMEN

Although several plant protease inhibitors have been structurally characterized using X-ray crystallography, very few have been studied using NMR techniques. Here, we report an NMR study of the solution structure and dynamics of an inhibitory repeat domain (IRD) variant 12 from the wound-inducible Pin-II type proteinase inhibitor from Capsicum annuum. IRD variant 12 (IRD12) showed strong anti-metabolic activity against the Lepidopteran insect pest, Helicoverpa armigera. The NMR-derived three-dimensional structure of IRD12 reveals a three-stranded anti-parallel ß-sheet rigidly held together by four disulfide bridges and shows structural homology with known IRDs. It is interesting to note that the IRD12 structure containing ∼75% unstructured part still shows substantial amount of rigidity of N-H bond vectors with respect to its molecular motion.Communicated by Ramaswamy H. Sarma.


Asunto(s)
Capsicum , Mariposas Nocturnas , Animales , Capsicum/genética , Insectos , Proteínas de Plantas/genética , Inhibidores de Proteasas/farmacología
5.
Biochem Pharmacol ; 174: 113782, 2020 04.
Artículo en Inglés | MEDLINE | ID: mdl-31881193

RESUMEN

Urotoxin (α-KTx 6), a peptide from venom of the Australian scorpion Urodacus yaschenkoi, is the most potent inhibitor of Kv1.2 described to date (IC50 = 160 pM). The native peptide also inhibits Kv1.1, Kv1.3 and KCa3.1 with nanomolar affinity but its low abundance in venom precluded further studies of its actions. Here we produced recombinant Urotoxin (rUro) and characterized the molecular determinants of Kv1 channel inhibition. The 3D structure of rUro determined using NMR spectroscopy revealed a canonical cysteine-stabilised α/ß (CSα/ß) fold. Functional assessment of rUro using patch-clamp electrophysiology revealed the importance of C-terminal amidation for potency against Kv1.1-1.3 and Kv1.5. Neutralization of the putative pore-blocking K25 residue in rUro by mutation to Ala resulted in a major decrease in rUro potency against all Kv channels tested, without perturbing the toxin's structure. Reciprocal mutations in the pore of Uro-sensitive Kv1.2 and Uro-resistant Kv1.5 channels revealed a direct interaction between Urotoxin and the Kv channel pore. Our experimental work supports postulating a mechanism of action in which occlusion of the permeation pathway by the K25 residue in Urotoxin is the basis of its Kv1 inhibitory activity. Docking analysis was consistent with occlusion of the pore by K25 and the requirement of a small, non-charged amino acid in the Kv1 channel vestibule to facilitate toxin-channel interactions. Finally, computational studies revealed key interactions between the amidated C-terminus of Urotoxin and a conserved Asp residue in the turret of Kv1 channels, offering a potential rationale for potency differences between native and recombinant Urotoxin.


Asunto(s)
Canal de Potasio Kv.1.1/antagonistas & inhibidores , Bloqueadores de los Canales de Potasio/aislamiento & purificación , Venenos de Escorpión/química , Animales , Cromatografía Líquida de Alta Presión , Escherichia coli/genética , Humanos , Canal de Potasio Kv.1.1/genética , Simulación del Acoplamiento Molecular , Resonancia Magnética Nuclear Biomolecular , Técnicas de Placa-Clamp , Bloqueadores de los Canales de Potasio/farmacología , Conformación Proteica , Escorpiones , Espectrometría de Masa por Láser de Matriz Asistida de Ionización Desorción , Linfocitos T/metabolismo
6.
Front Pharmacol ; 10: 577, 2019.
Artículo en Inglés | MEDLINE | ID: mdl-31214027

RESUMEN

Peptides derived from animal venoms provide important research tools for biochemical and pharmacological characterization of receptors, ion channels, and transporters. Some venom peptides have been developed into drugs (such as the synthetic ω-conotoxin MVIIA, ziconotide) and several are currently undergoing clinical trials for various clinical indications. Challenges in the development of peptides include their usually limited supply from natural sources, cost-intensive chemical synthesis, and potentially complicated stereoselective disulfide-bond formation in the case of disulfide-rich peptides. In particular, if extended structure-function analysis is performed or incorporation of stable isotopes for NMR studies is required, the comparatively low yields and high costs of synthesized peptides might constitute a limiting factor. Here we investigated the expression of the 4/7 α-conotoxin TxIA, a potent blocker at α3ß2 and α7 nicotinic acetylcholine receptors (nAChRs), and three analogs in the form of maltose binding protein fusion proteins in Escherichia coli. Upon purification via nickel affinity chromatography and release of the toxins by protease cleavage, HPLC analysis revealed one major peak with the correct mass for all peptides. The final yield was 1-2 mg of recombinant peptide per liter of bacterial culture. Two-electrode voltage clamp analysis on oocyte-expressed nAChR subtypes demonstrated the functionality of these peptides but also revealed a 30 to 100-fold potency decrease of expressed TxIA compared to chemically synthesized TxIA. NMR spectroscopy analysis of TxIA and two of its analogs confirmed that the decreased activity was due to an alternative disulfide linkage rather than the missing C-terminal amidation, a post-translational modification that is common in α-conotoxins. All peptides preferentially formed in the ribbon conformation rather than the native globular conformation. Interestingly, in the case of the α7 nAChR, but not the α3ß2 subtype, the loss of potency could be rescued by an R5D substitution. In conclusion, we demonstrate efficient expression of functional but alternatively folded ribbon TxIA variants in E. coli and provide the first structure-function analysis for a ribbon 4/7-α-conotoxin at α7 and α3ß2 nAChRs. Computational analysis based on these data provide evidence for a ribbon α-conotoxin binding mode that might be exploited to design ligands with optimized selectivity.

7.
Biomol NMR Assign ; 13(1): 31-35, 2019 04.
Artículo en Inglés | MEDLINE | ID: mdl-30229451

RESUMEN

Helicoverpa species are polyphagous pests, with the larval stages causing major damage to economically valuable crops such as cotton, tomato, corn, sorghum, peas, sunflower, wheat and other pulses. Over the years, Helicoverpa armigera has developed resistance to most classes of chemical insecticides, and consequently it is now largely controlled on cotton plants via the use of Bt transgenic crops that express insecticidal Cry toxins which in-turn expedited resistance development in a number of pest species including H. armigera. In a hope to provide other eco-friendly alternatives solutions to counter the effect of the pest, people have identified a number of protease inhibitors (PIs) from the domesticated capsicum species Capsicum annuum, several of which potently inhibited H. armigera gut proteases and impeded growth of H. armigera larva. With a view to explore and enhance the specific nature or properties of these PIs on the mechanism of inhibition, structural and functional characterization of these PIs are inevitable. Towards this goal, we have carried out complete 1H, 13C and 15N resonance assignments of two of these PIs, identified as IRD7 and IRD12, using a suite of 2D and 3D multi-dimensional and multi-nuclear NMR experiments.


Asunto(s)
Capsicum/química , Resonancia Magnética Nuclear Biomolecular , Proteínas de Plantas/química , Inhibidores de Proteasas/química , Secuencia de Aminoácidos , Isótopos de Carbono , Isótopos de Nitrógeno , Protones
8.
Front Plant Sci ; 9: 598, 2018.
Artículo en Inglés | MEDLINE | ID: mdl-29774044

RESUMEN

In sugarcane, invertase enzymes play a key role in sucrose accumulation and are also involved in futile reactions where sucrose is continuously degraded during the pre- and post-harvest period, thereby reducing sugar yield and recovery. Invertase inhibitor (INVINH) proteins play a key role in post-translation regulation of plant invertases through which sucrose hydrolysis is controlled. INVINH proteins are small (18 kDa) members of the pectin methylesterase inhibitor superfamily and they are moderately conserved across plants. In the present study, we identified two INVINH genes from sugarcane, ShINH1 and ShINH2. In silico characterization of the encoded proteins revealed 43% sequence identity at the amino acid level, confirming the non-allelic nature of the proteins. The presence of putative signal peptide and subcellular targeting sequences revealed that ShINH1 and ShINH2 likely have apoplasmic and vacuolar localization, respectively. Experimental visualization of ShINH1-GFP revealed that ShINHI is indeed exported to the apoplast. Differential tissue-specific and developmental expression of ShINH1 between leaf, stalk, flower and root suggest that it plays a role in controlling source-sink metabolic regulation during sucrose accumulation in sugarcane. ShINH1 is expressed at relatively high levels in leaves and stalk compared to flowers and roots, and expression decreases significantly toward internodal maturity during stalk development. ShINH1 is expressed at variable levels in flowers with no specific association to floral maturity. Production of recombinant ShINH1 enabled experimental validation of protein function under in vitro conditions. Recombinant ShINH1 potently inhibited acid invertase (IC50 22.5 nM), making it a candidate for controlling pre- and post-harvest deterioration of sucrose in sugarcane. Our results indicate that ShINH1 and ShINH2 are likely to play a regulatory role in sucrose accumulation and contribute to the improvement of sugar yield and recovery in sugarcane.

9.
Bioinformatics ; 34(6): 1074-1076, 2018 03 15.
Artículo en Inglés | MEDLINE | ID: mdl-29069336

RESUMEN

Summary: ArachnoServer is a manually curated database that consolidates information on the sequence, structure, function and pharmacology of spider-venom toxins. Although spider venoms are complex chemical arsenals, the primary constituents are small disulfide-bridged peptides that target neuronal ion channels and receptors. Due to their high potency and selectivity, these peptides have been developed as pharmacological tools, bioinsecticides and drug leads. A new version of ArachnoServer (v3.0) has been developed that includes a bioinformatics pipeline for automated detection and analysis of peptide toxin transcripts in assembled venom-gland transcriptomes. ArachnoServer v3.0 was updated with the latest sequence, structure and functional data, the search-by-mass feature has been enhanced, and toxin cards provide additional information about each mature toxin. Availability and implementation: http://arachnoserver.org. Contact: support@arachnoserver.org. Supplementary information: Supplementary data are available at Bioinformatics online.


Asunto(s)
Venenos de Araña/química , Animales , Automatización de Laboratorios , Disulfuros/química , Proteínas de Insectos/química , Péptidos/química , Venenos de Araña/análisis
10.
Br J Pharmacol ; 175(12): 2204-2218, 2018 06.
Artículo en Inglés | MEDLINE | ID: mdl-29134638

RESUMEN

BACKGROUND AND PURPOSE: Acid-sensing ion channels (ASICs) are primary acid sensors in mammals, with the ASIC1b and ASIC3 subtypes being involved in peripheral nociception. The antiprotozoal drug diminazene is a moderately potent ASIC inhibitor, but its analgesic activity has not been assessed. EXPERIMENTAL APPROACH: We determined the ASIC subtype selectivity of diminazene and the mechanism by which it inhibits ASICs using voltage-clamp electrophysiology of Xenopus oocytes expressing ASICs 1-3. Its peripheral analgesic activity was then assessed relative to APETx2, an ASIC3 inhibitor, and morphine, in a Freund's complete adjuvant (FCA)-induced rat model of inflammatory pain. KEY RESULTS: Diminazene inhibited homomeric rat ASICs with IC50 values of ~200-800 nM, via an open channel and subtype-dependent mechanism. In rats with FCA-induced inflammatory pain in one hindpaw, diminazene and APETx2 evoked more potent peripheral antihyperalgesia than morphine, but the effect was partial for APETx2. APETx2 potentiated rat ASIC1b at concentrations 30-fold to 100-fold higher than the concentration inhibiting ASIC3, which may have implications for its use in in vivo experiments. CONCLUSIONS AND IMPLICATIONS: Diminazene and APETx2 are moderately potent ASIC inhibitors, both inducing peripheral antihyperalgesia in a rat model of chronic inflammatory pain. APETx2 has a more complex ASIC pharmacology, which must be considered when it is used as a supposedly selective ASIC3 inhibitor in vivo. Our use of outbred rats revealed responders and non-responders when ASIC inhibition was used to alleviate inflammatory pain, which is aligned with the concept of number-needed-to-treat in human clinical studies. LINKED ARTICLES: This article is part of a themed section on Recent Advances in Targeting Ion Channels to Treat Chronic Pain. To view the other articles in this section visit http://onlinelibrary.wiley.com/doi/10.1111/bph.v175.12/issuetoc.


Asunto(s)
Canales Iónicos Sensibles al Ácido/metabolismo , Dolor Crónico/tratamiento farmacológico , Venenos de Cnidarios/metabolismo , Diminazeno/farmacología , Hiperalgesia/tratamiento farmacológico , Hipoglucemiantes/farmacología , Inflamación/tratamiento farmacológico , Bloqueadores del Canal Iónico Sensible al Ácido/química , Bloqueadores del Canal Iónico Sensible al Ácido/farmacología , Animales , Dolor Crónico/metabolismo , Diminazeno/química , Modelos Animales de Enfermedad , Hiperalgesia/metabolismo , Hipoglucemiantes/química , Inflamación/metabolismo , Masculino , Dimensión del Dolor , Ratas , Ratas Sprague-Dawley , Xenopus laevis
11.
Methods Mol Biol ; 1586: 155-180, 2017.
Artículo en Inglés | MEDLINE | ID: mdl-28470604

RESUMEN

Recombinant expression of disulfide-reticulated peptides and proteins is often challenging. We describe a method that exploits the periplasmic disulfide-bond forming machinery of Escherichia coli and combines this with a cleavable, solubility-enhancing fusion tag to obtain higher yields of correctly folded target protein than is achievable via cytoplasmic expression. The protocols provided herein cover all aspects of this approach, from vector construction and transformation to purification of the cleaved target protein and subsequent quality control.


Asunto(s)
Disulfuros/química , Escherichia coli/genética , Péptidos/química , Péptidos/genética , Periplasma/genética , Cromatografía de Afinidad/métodos , Cromatografía Líquida de Alta Presión/métodos , Disulfuros/aislamiento & purificación , Disulfuros/metabolismo , Electroforesis en Gel de Poliacrilamida/métodos , Péptidos/aislamiento & purificación , Plásmidos/genética , Pliegue de Proteína , Proteínas Recombinantes de Fusión/química , Proteínas Recombinantes de Fusión/genética , Solubilidad , Transformación Genética
12.
J Med Chem ; 57(21): 9195-203, 2014 Nov 13.
Artículo en Inglés | MEDLINE | ID: mdl-25337890

RESUMEN

The sea anemone peptide APETx2 is a potent and selective blocker of acid-sensing ion channel 3 (ASIC3). APETx2 is analgesic in a variety of rodent pain models, but the lack of knowledge of its pharmacophore and binding site on ASIC3 has impeded development of improved analogues. Here we present a detailed structure-activity relationship study of APETx2. Determination of a high-resolution structure of APETx2 combined with scanning mutagenesis revealed a cluster of aromatic and basic residues that mediate its interaction with ASIC3. We show that APETx2 also inhibits the off-target hERG channel by reducing the maximal current amplitude and shifting the voltage dependence of activation to more positive potentials. Electrophysiological screening of selected APETx2 mutants revealed partial overlap between the surfaces on APETx2 that mediate its interaction with ASIC3 and hERG. Characterization of the molecular basis of these interactions is an important first step toward the rational design of more selective APETx2 analogues.


Asunto(s)
Canales Iónicos Sensibles al Ácido/metabolismo , Venenos de Cnidarios/farmacología , Canales de Potasio Éter-A-Go-Go/antagonistas & inhibidores , Animales , Venenos de Cnidarios/genética , Canal de Potasio ERG1 , Canales de Potasio Éter-A-Go-Go/metabolismo , Humanos , Modelos Moleculares , Mutación , Anémonas de Mar , Relación Estructura-Actividad
13.
Mar Drugs ; 10(7): 1605-1618, 2012 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-22851929

RESUMEN

Acid-sensing ion channels (ASICs) are proton-gated sodium channels present in the central and peripheral nervous system of chordates. ASIC3 is highly expressed in sensory neurons and plays an important role in inflammatory and ischemic pain. Thus, specific inhibitors of ASIC3 have the potential to be developed as novel analgesics. APETx2, isolated from the sea anemone Anthopleura elegantissima, is the most potent and selective inhibitor of ASIC3-containing channels. However, the mechanism of action of APETx2 and the molecular basis for its interaction with ASIC3 is not known. In order to assist in characterizing the ASIC3-APETx2 interaction, we developed an efficient and cost-effective Escherichia coli periplasmic expression system for the production of APETx2. NMR studies on uniformly (13)C/(15)N-labelled APETx2 produced in E. coli showed that the recombinant peptide adopts the native conformation. Recombinant APETx2 is equipotent with synthetic APETx2 at inhibiting ASIC3 channels expressed in Xenopus oocytes. Using this system we mutated Phe15 to Ala, which caused a profound loss of APETx2's activity on ASIC3. These findings suggest that this expression system can be used to produce mutant versions of APETx2 in order to facilitate structure-activity relationship studies.


Asunto(s)
Bloqueadores del Canal Iónico Sensible al Ácido/farmacología , Canales Iónicos Sensibles al Ácido/metabolismo , Venenos de Cnidarios/biosíntesis , Escherichia coli/genética , Proteínas Recombinantes/biosíntesis , Animales , Venenos de Cnidarios/química , Venenos de Cnidarios/farmacología , Ratas , Proteínas Recombinantes/aislamiento & purificación
14.
PLoS One ; 7(12): e52965, 2012.
Artículo en Inglés | MEDLINE | ID: mdl-23300835

RESUMEN

The K(v)1.3 voltage-gated potassium channel regulates membrane potential and calcium signaling in human effector memory T cells that are key mediators of autoimmune diseases such as multiple sclerosis, type 1 diabetes, and rheumatoid arthritis. Thus, subtype-specific K(v)1.3 blockers have potential for treatment of autoimmune diseases. Several K(v)1.3 channel blockers have been characterized from scorpion venom, all of which have an α/ß scaffold stabilized by 3-4 intramolecular disulfide bridges. Chemical synthesis is commonly used for producing these disulfide-rich peptides but this approach is time consuming and not cost effective for production of mutants, fusion proteins, fluorescently tagged toxins, or isotopically labelled peptides for NMR studies. Recombinant production of K(v)1.3 blockers in the cytoplasm of E. coli generally necessitates oxidative refolding of the peptides in order to form their native disulfide architecture. An alternative approach that avoids the need for refolding is expression of peptides in the periplasm of E. coli but this often produces low yields. Thus, we developed an efficient Pichia pastoris expression system for production of K(v)1.3 blockers using margatoxin (MgTx) and agitoxin-2 (AgTx2) as prototypic examples. The Pichia system enabled these toxins to be obtained in high yield (12-18 mg/L). NMR experiments revealed that the recombinant toxins adopt their native fold without the need for refolding, and electrophysiological recordings demonstrated that they are almost equipotent with the native toxins in blocking K(V)1.3 (IC(50) values of 201±39 pM and 97 ± 3 pM for recombinant AgTx2 and MgTx, respectively). Furthermore, both recombinant toxins inhibited T-lymphocyte proliferation. A MgTx mutant in which the key pharmacophore residue K28 was mutated to alanine was ineffective at blocking K(V)1.3 and it failed to inhibit T-lymphocyte proliferation. Thus, the approach described here provides an efficient method of producing toxin mutants with a view to engineering K(v)1.3 blockers with therapeutic potential.


Asunto(s)
Pichia/metabolismo , Bloqueadores de los Canales de Potasio/síntesis química , Proteínas Recombinantes/síntesis química , Venenos de Escorpión/síntesis química , Toxinas Biológicas/síntesis química , Animales , Línea Celular , Proliferación Celular , Fibroblastos/citología , Fibroblastos/metabolismo , Ratones , Conformación Proteica , Proteínas Recombinantes/metabolismo , Venenos de Escorpión/metabolismo , Toxinas Biológicas/metabolismo
15.
Amino Acids ; 40(1): 15-28, 2011 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-20177945

RESUMEN

The remarkable potency and pharmacological diversity of animal venoms has made them an increasingly valuable source of lead molecules for drug and insecticide discovery. Nevertheless, most of the chemical diversity encoded within these venoms remains uncharacterized, despite decades of research, in part because of the small quantities of venom available. However, recent advances in the miniaturization of bioassays and improvements in the sensitivity of mass spectrometry and NMR spectroscopy have allowed unprecedented access to the molecular diversity of animal venoms. Here, we discuss these technological developments in the context of establishing a high-throughput pipeline for venoms-based drug discovery.


Asunto(s)
Productos Biológicos/química , Descubrimiento de Drogas , Ponzoñas/química , Animales , Productos Biológicos/genética , Productos Biológicos/farmacología , Humanos , Estructura Molecular , Ponzoñas/genética , Ponzoñas/farmacología
16.
Toxicon ; 56(8): 1388-97, 2010 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-20813121

RESUMEN

Acid sensing ion channels (ASICs) are family of proteins predominantly present in the central and peripheral nervous system. They are known to play important roles in the pathophysiology of pain and ischemic stroke. APETx2 is a potent and selective inhibitor of ASIC3-containing channels and was isolated from sea anemone Anthopleura elegantissima. To facilitate the study on the molecular determinants of ASIC3-ligand interactions, we expressed recombinant APETx2 in the Pichia pastoris (P. pastoris) expression system and purified it to homogeneity. Recombinant APETx2 produced in P. pastoris inhibited the acid-evoked ASIC3 current with the IC(50) value of 37.3 nM. The potency of recombinant toxin is similar to that of native APETx2. The sequential assignment and structure analysis of APETx2 were obtained by 2D and 3D (15)N-edited NMR spectra. Our NMR data suggests that APETx2 produced in P. pastoris retained its native fold. The results presented here provide the first direct evidence that highly disulfide bonded peptide inhibitor of ASIC3, APETx2, can be expressed in P. pastoris with correct fold and high yield. We also showed that the R17A mutant exhibited a decrease in activity, suggesting the feasibility of the use of this expression system to study the interactions between APETx2 and ASIC3. These evidences may serve as the basis for understanding the selectivity and activity of APETx2.


Asunto(s)
Venenos de Cnidarios/metabolismo , Proteínas del Tejido Nervioso/antagonistas & inhibidores , Pichia/metabolismo , Canales Iónicos Sensibles al Ácido , Animales , Venenos de Cnidarios/química , Venenos de Cnidarios/genética , Venenos de Cnidarios/aislamiento & purificación , Ratones , Resonancia Magnética Nuclear Biomolecular , Técnicas de Placa-Clamp , Pichia/genética , Pliegue de Proteína , Estructura Terciaria de Proteína , Proteínas Recombinantes de Fusión/metabolismo , Análisis de Secuencia de Proteína , Canales de Sodio/genética , Canales de Sodio/metabolismo
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...