Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 31
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
iScience ; 25(9): 104925, 2022 Sep 16.
Artículo en Inglés | MEDLINE | ID: mdl-35992305

RESUMEN

Pharmacologically active compounds with known biological targets were evaluated for inhibition of SARS-CoV-2 infection in cell and tissue models to help identify potent classes of active small molecules and to better understand host-virus interactions. We evaluated 6,710 clinical and preclinical compounds targeting 2,183 host proteins by immunocytofluorescence-based screening to identify SARS-CoV-2 infection inhibitors. Computationally integrating relationships between small molecule structure, dose-response antiviral activity, host target, and cell interactome produced cellular networks important for infection. This analysis revealed 389 small molecules with micromolar to low nanomolar activities, representing >12 scaffold classes and 813 host targets. Representatives were evaluated for mechanism of action in stable and primary human cell models with SARS-CoV-2 variants and MERS-CoV. One promising candidate, obatoclax, significantly reduced SARS-CoV-2 viral lung load in mice. Ultimately, this work establishes a rigorous approach for future pharmacological and computational identification of host factor dependencies and treatments for viral diseases.

2.
Antiviral Res ; 206: 105399, 2022 10.
Artículo en Inglés | MEDLINE | ID: mdl-36007601

RESUMEN

Filoviruses enter cells through macropinocytosis and trafficking into the endosomes in which they bind to the receptor Niemann-Pick C1 protein (NPC1) for membrane fusion and entry into the cytoplasm. The endosomal receptor-binding is critical step for filovirus entry. Designing inhibitors to block receptor binding will prevent viral entry. Using available binding structural information from the co-crystal structures of the viral GP with the receptor NPC1 or with monoclonal antibodies, we have conducted structure-based design of peptide inhibitors to target the receptor binding site (RBS). The designed peptides were tested for their inhibition activity against pseudo-typed or replication-competent viruses in a cell-based assay. The results indicate that these peptides exhibited strong activities against both Ebola and Marburg virus infection. It is expected that these peptides can be further developed for therapeutic use to treat filovirus infection and combat the outbreaks.


Asunto(s)
Filoviridae , Receptores Virales , Inhibidores de Proteínas Virales de Fusión , Sitios de Unión , Proteínas Portadoras/metabolismo , Línea Celular , Ebolavirus/fisiología , Endosomas/metabolismo , Filoviridae/química , Filoviridae/efectos de los fármacos , Fiebre Hemorrágica Ebola , Humanos , Péptidos y Proteínas de Señalización Intracelular/metabolismo , Ligandos , Glicoproteínas de Membrana/metabolismo , Proteína Niemann-Pick C1/metabolismo , Receptores Virales/química , Receptores Virales/metabolismo , Inhibidores de Proteínas Virales de Fusión/química , Inhibidores de Proteínas Virales de Fusión/farmacología , Internalización del Virus/efectos de los fármacos
3.
ACS Infect Dis ; 8(5): 942-957, 2022 05 13.
Artículo en Inglés | MEDLINE | ID: mdl-35357134

RESUMEN

Ebola virus (EBOV) is an aggressive filoviral pathogen that can induce severe hemorrhagic fever in humans with up to 90% fatality rate. To date, there are no clinically effective small-molecule drugs for postexposure therapies to treat filoviral infections. EBOV cellular entry and infection involve uptake via macropinocytosis, navigation through the endocytic pathway, and pH-dependent escape into the cytoplasm. We report the inhibition of EBOV cell entry via selective inhibition of vacuolar (V)-ATPase by a new series of phenol-substituted derivatives of the natural product scaffold diphyllin. In cells challenged with Ebola virus, the diphyllin derivatives inhibit viral entry dependent upon structural variations to low nanomolar potencies. Mechanistically, the diphyllin derivatives had no effect on uptake and colocalization of viral particles with endocytic marker LAMP1 but directly modulated endosomal pH. The most potent effects were reversible exhibiting higher selectivity than bafilomycin or the parent diphyllin. Unlike general lysosomotrophic agents, the diphyllin derivatives showed no major disruptions of endocytic populations or morphology when examined with Rab5 and LAMP1 markers. The dilated vacuole phenotype induced by apilimod treatment or in constitutively active Rab5 mutant Q79L-expressing cells was both blocked and reversed by the diphyllin derivatives. The results are consistent with the action of the diphyllin scaffold as a selective pH-dependent viral entry block in late endosomes. Overall, the compounds show improved selectivity and minimal cytotoxicity relative to classical endosomal acidification blocking agents.


Asunto(s)
Ebolavirus , Fiebre Hemorrágica Ebola , Benzodioxoles/farmacología , Fiebre Hemorrágica Ebola/tratamiento farmacológico , Humanos , Lignanos , Fenol/farmacología , Fenol/uso terapéutico , Internalización del Virus
4.
bioRxiv ; 2022 Feb 01.
Artículo en Inglés | MEDLINE | ID: mdl-33907750

RESUMEN

Identification of host factors contributing to replication of viruses and resulting disease progression remains a promising approach for development of new therapeutics. Here, we evaluated 6710 clinical and preclinical compounds targeting 2183 host proteins by immunocytofluorescence-based screening to identify SARS-CoV-2 infection inhibitors. Computationally integrating relationships between small molecule structure, dose-response antiviral activity, host target and cell interactome networking produced cellular networks important for infection. This analysis revealed 389 small molecules, >12 scaffold classes and 813 host targets with micromolar to low nanomolar activities. From these classes, representatives were extensively evaluated for mechanism of action in stable and primary human cell models, and additionally against Beta and Delta SARS-CoV-2 variants and MERS-CoV. One promising candidate, obatoclax, significantly reduced SARS-CoV-2 viral lung load in mice. Ultimately, this work establishes a rigorous approach for future pharmacological and computational identification of novel host factor dependencies and treatments for viral diseases.

5.
EMBO J ; 40(18): e105658, 2021 09 15.
Artículo en Inglés | MEDLINE | ID: mdl-34260076

RESUMEN

The Ebola virus VP30 protein interacts with the viral nucleoprotein and with host protein RBBP6 via PPxPxY motifs that adopt non-canonical orientations, as compared to other proline-rich motifs. An affinity tag-purification mass spectrometry approach identified additional PPxPxY-containing host proteins hnRNP L, hnRNPUL1, and PEG10, as VP30 interactors. hnRNP L and PEG10, like RBBP6, inhibit viral RNA synthesis and EBOV infection, whereas hnRNPUL1 enhances. RBBP6 and hnRNP L modulate VP30 phosphorylation, increase viral transcription, and exert additive effects on viral RNA synthesis. PEG10 has more modest inhibitory effects on EBOV replication. hnRNPUL1 positively affects viral RNA synthesis but in a VP30-independent manner. Binding studies demonstrate variable capacity of the PPxPxY motifs from these proteins to bind VP30, define PxPPPPxY as an optimal binding motif, and identify the fifth proline and the tyrosine as most critical for interaction. Competition binding and hydrogen-deuterium exchange mass spectrometry studies demonstrate that each protein binds a similar interface on VP30. VP30 therefore presents a novel proline recognition domain that is targeted by multiple host proteins to modulate viral transcription.


Asunto(s)
Ebolavirus/fisiología , Fiebre Hemorrágica Ebola/metabolismo , Fiebre Hemorrágica Ebola/virología , Prolina/metabolismo , Tirosina/metabolismo , Proteínas Portadoras , Regulación Viral de la Expresión Génica , Interacciones Huésped-Patógeno , Humanos , Unión Proteica , Replicación Viral
6.
Antiviral Res ; 189: 105059, 2021 05.
Artículo en Inglés | MEDLINE | ID: mdl-33705865

RESUMEN

Filoviruses, mainly consisting of Ebola viruses (EBOV) and Marburg viruses (MARV), are enveloped negative-strand RNA viruses which can infect humans to cause severe hemorrhagic fevers and outbreaks with high mortality rates. The filovirus infection is mediated by the interaction of viral envelope glycoprotein (GP) and the human endosomal receptor Niemann-Pick C1 (NPC1). Blocking this interaction will prevent the infection. Therefore, we utilized an In silico screening approach to conduct virtual compound screening against the NPC1 receptor-binding site (RBS). Twenty-six top-hit compounds were purchased and evaluated by in vitro cell based inhibition assays against pseudotyped or replication-competent filoviruses. Two classes (A and U) of compounds were identified to have potent inhibitory activity against both Ebola and Marburg viruses. The IC50 values are in the lower level of micromolar concentrations. One compound (compd-A) was found to have a sub-micromolar IC50 value (0.86 µM) against pseudotyped Marburg virus. The cytotoxicity assay (MTT) indicates that compd-A has a moderate cytotoxicity level but the compd-U has much less toxicity and the CC50 value was about 100 µM. Structure-activity relationship (SAR) study has found some analogs of compd-A and -U have reduced the toxicity and enhanced the inhibitory activity. In conclusion, this work has identified several qualified lead-compounds for further drug development against filovirus infection.


Asunto(s)
Antivirales/farmacología , Ebolavirus/efectos de los fármacos , Infecciones por Filoviridae/virología , Marburgvirus/efectos de los fármacos , Proteína Niemann-Pick C1/metabolismo , Proteínas del Envoltorio Viral/metabolismo , Internalización del Virus/efectos de los fármacos , Antivirales/química , Sitios de Unión , Supervivencia Celular , Descubrimiento de Drogas , Ebolavirus/fisiología , Infecciones por Filoviridae/tratamiento farmacológico , Células HeLa , Interacciones Microbiota-Huesped/efectos de los fármacos , Humanos , Concentración 50 Inhibidora , Marburgvirus/fisiología , Simulación del Acoplamiento Molecular , Proteína Niemann-Pick C1/química , Unión Proteica , Receptores Virales/química , Receptores Virales/metabolismo
7.
Microorganisms ; 9(1)2021 Jan 12.
Artículo en Inglés | MEDLINE | ID: mdl-33445537

RESUMEN

Ongoing efforts to develop effective therapies against filoviruses rely, to different extents, on quantifying the amount of viable virus in samples by plaque, TCID50, and focus assays. Unfortunately, these techniques have inherent variance, and laboratory-specific preferences make direct comparison of data difficult. Additionally, human errors such as operator errors and subjective bias can further compound the differences in outcomes. To overcome these biases, we developed a computer-based automated image-processing method for a focus assay based on the open-source CellProfiler software platform, which enables high-throughput screening of many treatment samples at one time. We compared virus titers calculated using this platform to plaque and TCID50 assays using common stocks of virus for 3 major Filovirus species, Zaire ebolavirus, Sudan ebolavirus, and Marburg marburgvirus with each assay performed by multiple operators on multiple days. We show that plaque assays give comparable findings that differ by less than 3-fold. Focus-forming unit (FFU) and TCID50 assays differ by 10-fold or less from the plaque assays due a higher (FFU) and lower (TCID50) sensitivity. However, reproducibility and accuracy of each assay differs significantly with Neutral Red Agarose Overlay plaque assays and TCID50 with the lowest reproducibility due to subjective analysis and operator error. Both crystal violet methylcellulose overlay plaque assay and focus assays perform best for accuracy and the focus assay performs best for speed and throughput.

8.
ACS Infect Dis ; 6(10): 2783-2799, 2020 10 09.
Artículo en Inglés | MEDLINE | ID: mdl-32870648

RESUMEN

Marburg virus (MARV) causes sporadic outbreaks of severe disease with high case fatality rates in humans. To date, neither therapeutics nor prophylactic approaches have been approved for MARV disease. The MARV matrix protein VP40 (mVP40) plays central roles in virus assembly and budding. mVP40 also inhibits interferon signaling by inhibiting the function of Janus kinase 1. This suppression of host antiviral defenses likely contributes to MARV virulence and therefore is a potential therapeutic target. We developed and optimized a cell-based high-throughput screening (HTS) assay in 384-well format to measure mVP40 interferon (IFN) antagonist function such that inhibitors could be identified. We performed a pilot screen of 1280 bioactive compounds and identified 3 hits, azaguanine-8, tosufloxacin hydrochloride, and linezolid, with Z scores > 3 and no significant cytotoxicity. Of these, azaguanine-8 inhibited MARV growth at noncytotoxic concentrations. These data demonstrate the suitability of the HTS mVP40 assay for drug discovery and suggest potential directions for anti-MARV therapeutic development.


Asunto(s)
Enfermedad del Virus de Marburg , Marburgvirus , Animales , Ensayos Analíticos de Alto Rendimiento , Humanos , Interferones , Ensamble de Virus
9.
J Med Chem ; 63(19): 11085-11099, 2020 10 08.
Artículo en Inglés | MEDLINE | ID: mdl-32886512

RESUMEN

Filoviridae, including Ebola (EBOV) and Marburg (MARV) viruses, are emerging pathogens that pose a serious threat to public health. No agents have been approved to treat filovirus infections, representing a major unmet medical need. The selective estrogen receptor modulator (SERM) toremifene was previously identified from a screen of FDA-approved drugs as a potent EBOV viral entry inhibitor, via binding to EBOV glycoprotein (GP). A focused screen of ER ligands identified ridaifen-B as a potent dual inhibitor of EBOV and MARV. Optimization and reverse-engineering to remove ER activity led to a novel compound 30 (XL-147) showing potent inhibition against infectious EBOV Zaire (0.09 µM) and MARV (0.64 µM). Mutagenesis studies confirmed that inhibition of EBOV viral entry is mediated by the direct interaction with GP. Importantly, compound 30 displayed a broad-spectrum antifilovirus activity against Bundibugyo, Tai Forest, Reston, and Menglà viruses and is the first submicromolar antiviral agent reported for some of these strains, therefore warranting further development as a pan-filovirus inhibitor.


Asunto(s)
Antivirales/farmacología , Filoviridae/efectos de los fármacos , Receptores de Estrógenos/efectos de los fármacos , Antivirales/química , Línea Celular Tumoral , Evaluación Preclínica de Medicamentos , Filoviridae/fisiología , Humanos , Ligandos , Fusión de Membrana/efectos de los fármacos , Modelos Biológicos , Relación Estructura-Actividad
10.
Antiviral Res ; 181: 104863, 2020 09.
Artículo en Inglés | MEDLINE | ID: mdl-32682926

RESUMEN

The recent outbreaks of the Ebola virus (EBOV) in Africa have brought global visibility to the shortage of available therapeutic options to treat patients infected with this or closely related viruses. We have recently computationally identified three molecules which have all demonstrated statistically significant efficacy in the mouse model of infection with mouse adapted Ebola virus (ma-EBOV). One of these molecules is the antimalarial pyronaridine tetraphosphate (IC50 range of 0.82-1.30 µM against three strains of EBOV and IC50 range of 1.01-2.72 µM against two strains of Marburg virus (MARV)) which is an approved drug in the European Union and used in combination with artesunate. To date, no small molecule drugs have shown statistically significant efficacy in the guinea pig model of EBOV infection. Pharmacokinetics and range-finding studies in guinea pigs directed us to a single 300 mg/kg or 600 mg/kg oral dose of pyronaridine 1hr after infection. Pyronaridine resulted in statistically significant survival of 40% at 300 mg/kg and protected from a lethal challenge with EBOV. In comparison, oral favipiravir (300 mg/kg dosed once a day) had 43.5% survival. All animals in the vehicle treatment group succumbed to disease by study day 12 (100% mortality). The in vitro metabolism and metabolite identification of pyronaridine and another of our EBOV active molecules, tilorone, suggested significant species differences which may account for the efficacy or lack thereof, respectively in guinea pig. In summary, our studies with pyronaridine demonstrates its utility for repurposing as an antiviral against EBOV and MARV.


Asunto(s)
Antivirales/uso terapéutico , Fiebre Hemorrágica Ebola/tratamiento farmacológico , Naftiridinas/uso terapéutico , Animales , Antivirales/farmacocinética , Modelos Animales de Enfermedad , Reposicionamiento de Medicamentos , Ebolavirus/efectos de los fármacos , Femenino , Cobayas , Humanos , Concentración 50 Inhibidora , Masculino , Marburgvirus/efectos de los fármacos , Ratones , Microsomas , Naftiridinas/farmacocinética
11.
J Med Chem ; 63(13): 7211-7225, 2020 07 09.
Artículo en Inglés | MEDLINE | ID: mdl-32490678

RESUMEN

The recent Ebola epidemics in West Africa underscore the great need for effective and practical therapies for future Ebola virus outbreaks. We have discovered a new series of remarkably potent small molecule inhibitors of Ebola virus entry. These 4-(aminomethyl)benzamide-based inhibitors are also effective against Marburg virus. Synthetic routes to these compounds allowed for the preparation of a wide variety of structures, including a conformationally restrained subset of indolines (compounds 41-50). Compounds 20, 23, 32, 33, and 35 are superior inhibitors of Ebola (Mayinga) and Marburg (Angola) infectious viruses. Representative compounds (20, 32, and 35) have shown good metabolic stability in plasma and liver microsomes (rat and human), and 32 did not inhibit CYP3A4 nor CYP2C9. These 4-(aminomethyl)benzamides are suitable for further optimization as inhibitors of filovirus entry, with the potential to be developed as therapeutic agents for the treatment and control of Ebola virus infections.


Asunto(s)
Antivirales/farmacología , Benzamidas/farmacología , Fiebre Hemorrágica Ebola/virología , Enfermedad del Virus de Marburg/virología , Internalización del Virus/efectos de los fármacos , Células A549 , Animales , Antivirales/química , Benzamidas/química , Chlorocebus aethiops , Inhibidores del Citocromo P-450 CYP3A/química , Inhibidores del Citocromo P-450 CYP3A/farmacología , Evaluación Preclínica de Medicamentos , Humanos , Microsomas Hepáticos/efectos de los fármacos , Simulación del Acoplamiento Molecular , Relación Estructura-Actividad , Toremifeno/química , Toremifeno/metabolismo , Toremifeno/farmacología , Células Vero , Proteínas del Envoltorio Viral/química , Proteínas del Envoltorio Viral/metabolismo
12.
PLoS Negl Trop Dis ; 13(11): e0007890, 2019 11.
Artículo en Inglés | MEDLINE | ID: mdl-31751347

RESUMEN

Recent outbreaks of the Ebola virus (EBOV) have focused attention on the dire need for antivirals to treat these patients. We identified pyronaridine tetraphosphate as a potential candidate as it is an approved drug in the European Union which is currently used in combination with artesunate as a treatment for malaria (EC50 between 420 nM-1.14 µM against EBOV in HeLa cells). Range-finding studies in mice directed us to a single 75 mg/kg i.p. dose 1 hr after infection which resulted in 100% survival and statistically significantly reduced viremia at study day 3 from a lethal challenge with mouse-adapted EBOV (maEBOV). Further, an EBOV window study suggested we could dose pyronaridine 2 or 24 hrs post-exposure to result in similar efficacy. Analysis of cytokine and chemokine panels suggests that pyronaridine may act as an immunomodulator during an EBOV infection. Our studies with pyronaridine clearly demonstrate potential utility for its repurposing as an antiviral against EBOV and merits further study in larger animal models with the added benefit of already being used as a treatment against malaria.


Asunto(s)
Antimaláricos/administración & dosificación , Antivirales/administración & dosificación , Fiebre Hemorrágica Ebola/prevención & control , Naftiridinas/administración & dosificación , Animales , Antimaláricos/efectos adversos , Antimaláricos/farmacocinética , Antivirales/efectos adversos , Antivirales/farmacocinética , Citocinas/inmunología , Reposicionamiento de Medicamentos , Ebolavirus/efectos de los fármacos , Ebolavirus/genética , Ebolavirus/fisiología , Femenino , Fiebre Hemorrágica Ebola/inmunología , Fiebre Hemorrágica Ebola/virología , Humanos , Masculino , Ratones , Ratones Endogámicos BALB C , Naftiridinas/efectos adversos , Naftiridinas/farmacocinética
13.
Pharm Res ; 36(7): 104, 2019 May 17.
Artículo en Inglés | MEDLINE | ID: mdl-31101988

RESUMEN

PURPOSE: Since the 2014 Ebola virus (EBOV) outbreak in West Africa there has been considerable effort towards developing drugs to treat Ebola virus disease and yet to date there is no FDA approved treatment. This is important as at the time of writing this manuscript there is an ongoing outbreak in the Democratic Republic of the Congo which has killed over 1000. METHODS: We have evaluated a small number of natural products, some of which had shown antiviral activity against other pathogens. This is exemplified with eugenol, which is found in high concentrations in multiple essential oils, and has shown antiviral activity against feline calicivirus, tomato yellow leaf curl virus, Influenza A virus, Herpes Simplex virus type 1 and 2, and four airborne phages. RESULTS: Four compounds possessed EC50 values less than or equal to 11 µM. Of these, eugenol, had an EC50 of 1.3 µM against EBOV and is present in several plants including clove, cinnamon, basil and bay. Eugenol is much smaller and structurally unlike any compound that has been previously identified as an inhibitor of EBOV, therefore it may provide new mechanistic insights. CONCLUSION: This compound is readily accessible in bulk quantities, is inexpensive, and has a long history of human consumption, which endorses the idea for further assessment as an antiviral therapeutic. This work also suggests that a more exhaustive assessment of natural product libraries against EBOV and other viruses is warranted to improve our ability to identify compounds that are so distinct from FDA approved drugs.


Asunto(s)
Antivirales/farmacología , Productos Biológicos/farmacología , Ebolavirus/efectos de los fármacos , Eugenol/farmacología , Fiebre Hemorrágica Ebola/tratamiento farmacológico , Fiebre Hemorrágica Ebola/virología , Células HeLa , Humanos
14.
ACS Omega ; 4(1): 2353-2361, 2019 Jan 31.
Artículo en Inglés | MEDLINE | ID: mdl-30729228

RESUMEN

We have previously described the first Bayesian machine learning models from FDA-approved drug screens, for identifying compounds active against the Ebola virus (EBOV). These models led to the identification of three active molecules in vitro: tilorone, pyronaridine, and quinacrine. A follow-up study demonstrated that one of these compounds, tilorone, has 100% in vivo efficacy in mice infected with mouse-adapted EBOV at 30 mg/kg/day intraperitoneal. This suggested that we can learn from the published data on EBOV inhibition and use it to select new compounds for testing that are active in vivo. We used these previously built Bayesian machine learning EBOV models alongside our chemical insights for the selection of 12 molecules, absent from the training set, to test for in vitro EBOV inhibition. Nine molecules were directly selected using the model, and eight of these molecules possessed a promising in vitro activity (EC50 < 15 µM). Three further compounds were selected for an in vitro evaluation because they were antimalarials, and compounds of this class like pyronaridine and quinacrine have previously been shown to inhibit EBOV. We identified the antimalarial drug arterolane (IC50 = 4.53 µM) and the anticancer clinical candidate lucanthone (IC50 = 3.27 µM) as novel compounds that have EBOV inhibitory activity in HeLa cells and generally lack cytotoxicity. This work provides further validation for using machine learning and medicinal chemistry expertize to prioritize compounds for testing in vitro prior to more costly in vivo tests. These studies provide further corroboration of this strategy and suggest that it can likely be applied to other pathogens in the future.

15.
Viruses ; 10(12)2018 11 30.
Artículo en Inglés | MEDLINE | ID: mdl-30513600

RESUMEN

Ebola virus is the causative agent of Ebola virus disease in humans. The lethality of Ebola virus infection is about 50%, supporting the urgent need to develop anti-Ebola drugs. Glycoprotein (GP) is the only surface protein of the Ebola virus, which is functionally critical for the virus to attach and enter the host cells, and is a promising target for anti-Ebola virus drug development. In this study, using the recombinant HIV-1/Ebola pseudovirus platform we previously established, we evaluated a small molecule library containing various quinoline compounds for anti-Ebola virus entry inhibitors. Some of the quinoline compounds specifically inhibited the entry of the Ebola virus. Among them, compound SYL1712 was the most potent Ebola virus entry inhibitor with an IC50 of ~1 µM. The binding of SYL1712 to the vial glycoprotein was computationally modeled and was predicted to interact with specific residues of GP. We used the time of the addition assay to show that compound SYL1712 blocks Ebola GP-mediated entry. Finally, consistent with being an Ebola virus entry inhibitor, compound SYL1712 inhibited infectious Ebola virus replication in tissue culture under biosafety level 4 containment, with an IC50 of 2 µM. In conclusion, we identified several related molecules with a diaryl-quinoline scaffold as potential anti-EBOV entry inhibitors, which can be further optimized for anti-Ebola drug development.


Asunto(s)
Antivirales/farmacología , Suplementos Dietéticos , Ebolavirus/efectos de los fármacos , Ebolavirus/fisiología , Fiebre Hemorrágica Ebola/virología , Quinolinas/farmacología , Internalización del Virus/efectos de los fármacos , Antivirales/química , Línea Celular , Evaluación Preclínica de Medicamentos/métodos , Ensayos Analíticos de Alto Rendimiento , Humanos , Concentración 50 Inhibidora , Pruebas de Sensibilidad Microbiana , Modelos Moleculares , Conformación Molecular , Estructura Molecular , Quinolinas/química , Relación Estructura-Actividad , Replicación Viral/efectos de los fármacos
16.
Cell ; 175(7): 1917-1930.e13, 2018 12 13.
Artículo en Inglés | MEDLINE | ID: mdl-30550789

RESUMEN

Ebola virus (EBOV) infection often results in fatal illness in humans, yet little is known about how EBOV usurps host pathways during infection. To address this, we used affinity tag-purification mass spectrometry (AP-MS) to generate an EBOV-host protein-protein interaction (PPI) map. We uncovered 194 high-confidence EBOV-human PPIs, including one between the viral transcription regulator VP30 and the host ubiquitin ligase RBBP6. Domain mapping identified a 23 amino acid region within RBBP6 that binds to VP30. A crystal structure of the VP30-RBBP6 peptide complex revealed that RBBP6 mimics the viral nucleoprotein (NP) binding to the same interface of VP30. Knockdown of endogenous RBBP6 stimulated viral transcription and increased EBOV replication, whereas overexpression of either RBBP6 or the peptide strongly inhibited both. These results demonstrate the therapeutic potential of biologics that target this interface and identify additional PPIs that may be leveraged for novel therapeutic strategies.


Asunto(s)
Proteínas Portadoras , Proteínas de Unión al ADN , Ebolavirus/fisiología , Fiebre Hemorrágica Ebola/metabolismo , Factores de Transcripción , Proteínas Virales , Replicación Viral/fisiología , Proteínas Portadoras/química , Proteínas Portadoras/genética , Proteínas Portadoras/metabolismo , Cristalografía por Rayos X , Proteínas de Unión al ADN/química , Proteínas de Unión al ADN/genética , Proteínas de Unión al ADN/metabolismo , Células HEK293 , Células HeLa , Fiebre Hemorrágica Ebola/genética , Fiebre Hemorrágica Ebola/patología , Humanos , Mapeo de Interacción de Proteínas , Factores de Transcripción/química , Factores de Transcripción/genética , Factores de Transcripción/metabolismo , Ubiquitina-Proteína Ligasas , Proteínas Virales/química , Proteínas Virales/genética , Proteínas Virales/metabolismo
17.
ChemMedChem ; 13(24): 2664-2676, 2018 12 20.
Artículo en Inglés | MEDLINE | ID: mdl-30335906

RESUMEN

Many viruses use endosomal pathways to gain entry into cells and propagate infection. Sensing of endosomal acidification is a trigger for the release of many virus cores into the cell cytosol. Previous efforts with inhibitors of vacuolar ATPase have been shown to block endosomal acidification and affect viral entry, albeit with limited potential for therapeutic selectivity. In this study, four novel series of derivatives of the vacuolar ATPase inhibitor diphyllin were synthesized to assess their potential for enhancing potency and anti-filoviral activity over cytotoxicity. Derivatives that suitably blocked cellular entry of Ebola pseudotyped virus were further evaluated as inhibitors of endosomal acidification and isolated human vacuolar ATPase activity. Several compounds with significant increases in potency over diphyllin in these assays also separated from cytotoxic doses in human cell models by >100-fold. Finally, three derivatives were shown to be inhibitors of replication-competent Ebola viral entry into primary macrophages with similar potencies and enhanced selectivity toward antiviral activity.


Asunto(s)
Antivirales/síntesis química , Benzodioxoles/síntesis química , Ebolavirus/efectos de los fármacos , Lignanos/síntesis química , ATPasas de Translocación de Protón Vacuolares/antagonistas & inhibidores , Internalización del Virus/efectos de los fármacos , Antivirales/farmacología , Benzodioxoles/farmacología , Supervivencia Celular/efectos de los fármacos , Ebolavirus/fisiología , Células HEK293 , Humanos , Concentración de Iones de Hidrógeno , Lignanos/farmacología , Relación Estructura-Actividad
18.
Antiviral Res ; 158: 288-302, 2018 10.
Artículo en Inglés | MEDLINE | ID: mdl-30144461

RESUMEN

Specific host pathways that may be targeted therapeutically to inhibit the replication of Ebola virus (EBOV) and other emerging viruses remain incompletely defined. A screen of 200,000 compounds for inhibition of an EBOV minigenome (MG) assay that measures the function of the viral polymerase complex identified as hits several compounds with an amino-tetrahydrocarbazole scaffold. This scaffold was structurally similar to GSK983, a compound previously described as having broad-spectrum antiviral activity due to its impairing de novo pyrimidine biosynthesis through inhibition of dihydroorotate dehydrogenase (DHODH). We generated compound SW835, the racemic version of GSK983 and demonstrated that SW835 and brequinar, another DHODH inhibitor, potently inhibit the MG assay and the replication of EBOV, vesicular stomatitis virus (VSV) and Zika (ZIKV) in vitro. Nucleoside and deoxynucleoside supplementation studies demonstrated that depletion of pyrimidine pools contributes to antiviral activity of these compounds. As reported for other DHODH inhibitors, SW835 and brequinar also induced expression of interferon stimulated genes (ISGs). ISG induction was demonstrated to occur without production of IFNα/ß and independently of the IFNα receptor and was not blocked by EBOV-encoded suppressors of IFN signaling pathways. Furthermore, we demonstrated that transcription factor IRF1 is required for this ISG induction, and that IRF1 induction requires the DNA damage response kinase ATM. Therefore, de novo pyrimidine biosynthesis is critical for the replication of EBOV and other RNA viruses and inhibition of this pathway activates an ATM and IRF1-dependent innate immune response that subverts EBOV immune evasion functions.


Asunto(s)
Ebolavirus/efectos de los fármacos , Inmunidad Innata/efectos de los fármacos , Nucleósidos/farmacología , Pirimidinas/antagonistas & inhibidores , Pirimidinas/biosíntesis , Replicación Viral/efectos de los fármacos , Células A549 , Antivirales/farmacología , Compuestos de Bifenilo/química , Compuestos de Bifenilo/farmacología , Carbazoles/química , Carbazoles/farmacología , Daño del ADN , Dihidroorotato Deshidrogenasa , Células HEK293 , Fiebre Hemorrágica Ebola/tratamiento farmacológico , Fiebre Hemorrágica Ebola/virología , Interacciones Huésped-Patógeno/efectos de los fármacos , Humanos , Evasión Inmune , Inmunidad Innata/genética , Factor 1 Regulador del Interferón/metabolismo , Factor 1 Regulador del Interferón/farmacología , Interferón-alfa/metabolismo , Interferón beta/metabolismo , Oxidorreductasas actuantes sobre Donantes de Grupo CH-CH/antagonistas & inhibidores , Virus ARN/efectos de los fármacos , Transducción de Señal/efectos de los fármacos , Vesiculovirus/efectos de los fármacos , Virus Zika/efectos de los fármacos
19.
J Infect Dis ; 218(suppl_5): S612-S626, 2018 11 22.
Artículo en Inglés | MEDLINE | ID: mdl-29860496

RESUMEN

Background: For most classes of drugs, rapid development of therapeutics to treat emerging infections is challenged by the timelines needed to identify compounds with the desired efficacy, safety, and pharmacokinetic profiles. Fully human monoclonal antibodies (mAbs) provide an attractive method to overcome many of these hurdles to rapidly produce therapeutics for emerging diseases. Methods: In this study, we deployed a platform to generate, test, and develop fully human antibodies to Zaire ebolavirus. We obtained specific anti-Ebola virus (EBOV) antibodies by immunizing VelocImmune mice that use human immunoglobulin variable regions in their humoral responses. Results: Of the antibody clones isolated, 3 were selected as best at neutralizing EBOV and triggering FcγRIIIa. Binding studies and negative-stain electron microscopy revealed that the 3 selected antibodies bind to non-overlapping epitopes, including a potentially new protective epitope not targeted by other antibody-based treatments. When combined, a single dose of a cocktail of the 3 antibodies protected nonhuman primates (NHPs) from EBOV disease even after disease symptoms were apparent. Conclusions: This antibody cocktail provides complementary mechanisms of actions, incorporates novel specificities, and demonstrates high-level postexposure protection from lethal EBOV disease in NHPs. It is now undergoing testing in normal healthy volunteers in preparation for potential use in future Ebola epidemics.


Asunto(s)
Anticuerpos Monoclonales/uso terapéutico , Anticuerpos Neutralizantes/uso terapéutico , Anticuerpos Antivirales/uso terapéutico , Fiebre Hemorrágica Ebola/tratamiento farmacológico , Animales , Anticuerpos Monoclonales/aislamiento & purificación , Glicoproteínas/inmunología , Cobayas , Células HEK293 , Humanos , Macaca mulatta , Masculino , Ratones
20.
Viruses ; 10(4)2018 03 27.
Artículo en Inglés | MEDLINE | ID: mdl-29584652

RESUMEN

The recent 2014-2016 West African Ebola virus epidemic underscores the need for the development of novel anti-Ebola therapeutics, due to the high mortality rates of Ebola virus infections and the lack of FDA-approved vaccine or therapy that is available for the prevention and treatment. Traditional Chinese medicines (TCMs) represent a huge reservoir of bioactive chemicals and many TCMs have been shown to have antiviral activities. 373 extracts from 128 TCMs were evaluated using a high throughput assay to screen for inhibitors of Ebola virus cell entry. Extract of Rhodiola rosea displayed specific and potent inhibition against cell entry of both Ebola virus and Marburg virus. In addition, twenty commercial compounds that were isolated from Rhodiola rosea were evaluated using the pseudotyped Ebola virus entry assay, and it was found that ellagic acid and gallic acid, which are two structurally related compounds, are the most effective ones. The activity of the extract and the two pure compounds were validated using infectious Ebola virus. The time-of-addition experiments suggest that, mechanistically, the Rhodiola rosea extract and the effective compounds act at an early step in the infection cycle following initial cell attachment, but prior to viral/cell membrane fusion. Our findings provide evidence that Rhodiola rosea has potent anti-filovirus properties that may be developed as a novel anti-Ebola treatment.


Asunto(s)
Antivirales/farmacología , Ebolavirus/efectos de los fármacos , Ácido Elágico/farmacología , Marburgvirus/efectos de los fármacos , Extractos Vegetales/farmacología , Rhodiola/química , Internalización del Virus/efectos de los fármacos , Células A549 , Antivirales/toxicidad , Línea Celular , Supervivencia Celular/efectos de los fármacos , Ácido Elágico/toxicidad , Ácido Gálico/farmacología , Ácido Gálico/toxicidad , Células HeLa , Fiebre Hemorrágica Ebola/tratamiento farmacológico , Fiebre Hemorrágica Ebola/virología , Ensayos Analíticos de Alto Rendimiento , Humanos , Concentración 50 Inhibidora , Medicina Tradicional China , Extractos Vegetales/química , Extractos Vegetales/aislamiento & purificación , Extractos Vegetales/toxicidad
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...