Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 6 de 6
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Front Cell Dev Biol ; 10: 1049653, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-36438552

RESUMEN

Nicotinamide riboside kinases (NRKs) control the conversion of dietary Nicotinamide Riboside (NR) to NAD+, but little is known about their contribution to endogenous NAD+ turnover and muscle plasticity during skeletal muscle growth and remodeling. Using NRK1/2 double KO (NRKdKO) mice, we investigated the influence of NRKs on NAD+ metabolism and muscle homeostasis, and on the response to neurogenic muscle atrophy and regeneration following muscle injury. Muscles from NRKdKO animals have altered nicotinamide (NAM) salvage and a decrease in mitochondrial content. In single myonuclei RNAseq of skeletal muscle, NRK2 mRNA expression is restricted to type IIx muscle fibers, and perturbed NAD+ turnover and mitochondrial metabolism shifts the fiber type composition of NRKdKO muscle to fast glycolytic IIB fibers. NRKdKO does not influence muscle atrophy during denervation but alters muscle repair after myofiber injury. During regeneration, muscle stem cells (MuSCs) from NRKdKO animals hyper-proliferate but fail to differentiate. NRKdKO also alters the recovery of NAD+ during muscle regeneration as well as mitochondrial adaptations and extracellular matrix remodeling required for tissue repair. These metabolic perturbations result in a transient delay of muscle regeneration which normalizes during myofiber maturation at late stages of regeneration via over-compensation of anabolic IGF1-Akt signaling. Altogether, we demonstrate that NAD+ synthesis controls mitochondrial metabolism and fiber type composition via NRK1/2 and is rate-limiting for myogenic commitment and mitochondrial maturation during skeletal muscle repair.

2.
Stem Cell Reports ; 16(9): 2169-2181, 2021 09 14.
Artículo en Inglés | MEDLINE | ID: mdl-34019816

RESUMEN

Duchenne muscular dystrophy (DMD) is a rare X-linked recessive disease that is associated with severe progressive muscle degeneration culminating in death due to cardiorespiratory failure. We previously observed an unexpected proliferation-independent telomere shortening in cardiomyocytes of a DMD mouse model. Here, we provide mechanistic insights using human induced pluripotent stem cell-derived cardiomyocytes (hiPSC-CMs). Using traction force microscopy, we show that DMD hiPSC-CMs exhibit deficits in force generation on fibrotic-like bioengineered hydrogels, aberrant calcium handling, and increased reactive oxygen species levels. Furthermore, we observed a progressive post-mitotic telomere shortening in DMD hiPSC-CMs coincident with downregulation of shelterin complex, telomere capping proteins, and activation of the p53 DNA damage response. This telomere shortening is blocked by blebbistatin, which inhibits contraction in DMD cardiomyocytes. Our studies underscore the role of fibrotic stiffening in the etiology of DMD cardiomyopathy. In addition, our data indicate that telomere shortening is progressive, contraction dependent, and mechanosensitive, and suggest points of therapeutic intervention.


Asunto(s)
Distrofias Musculares/genética , Distrofias Musculares/fisiopatología , Contracción Miocárdica/genética , Miocitos Cardíacos/metabolismo , Acortamiento del Telómero/genética , Biomarcadores , Cardiomiopatías/etiología , Cardiomiopatías/patología , Cardiomiopatías/fisiopatología , Diferenciación Celular , Células Cultivadas , Microambiente Celular/efectos de los fármacos , Medios de Cultivo Condicionados/metabolismo , Medios de Cultivo Condicionados/farmacología , Fibrosis , Técnica del Anticuerpo Fluorescente , Expresión Génica , Humanos , Inmunofenotipificación , Células Madre Pluripotentes Inducidas/citología , Células Madre Pluripotentes Inducidas/metabolismo , Fenómenos Mecánicos , Distrofias Musculares/patología , Distrofia Muscular de Duchenne/etiología , Distrofia Muscular de Duchenne/patología , Distrofia Muscular de Duchenne/fisiopatología , Contracción Miocárdica/efectos de los fármacos
3.
Trends Cell Biol ; 31(7): 556-568, 2021 07.
Artículo en Inglés | MEDLINE | ID: mdl-33674167

RESUMEN

Muscle stem cells (MuSCs) are tissue-resident stem cells required for growth and repair of skeletal muscle, that are otherwise maintained in a cell-cycle-arrested state called quiescence. While quiescence was originally believed to be a state of cellular inactivity, increasing evidence suggests that quiescence is dynamically regulated and contributes to stemness, the long-term capacity to maintain regenerative functions. Here, we review the current understanding of MuSC quiescence and highlight recently discovered molecular markers, which differentiate depth of quiescence and influence self-renewal capacity. We also discuss how quiescent MuSCs integrate paracrine factors from their niche and dynamically regulate cell signaling, metabolism and proteostasis as they anticipate physiological needs, and how perturbing these cues during aging impairs muscle regeneration.


Asunto(s)
Mioblastos , Células Madre , División Celular , Músculo Esquelético
4.
6.
Cell Stem Cell ; 24(3): 433-446.e7, 2019 03 07.
Artículo en Inglés | MEDLINE | ID: mdl-30686765

RESUMEN

Research on age-related regenerative failure of skeletal muscle has extensively focused on the phenotypes of muscle stem cells (MuSCs). In contrast, the impact of aging on regulatory cells in the MuSC niche remains largely unexplored. Here, we demonstrate that aging impairs the function of mouse fibro-adipogenic progenitors (FAPs) and thereby indirectly affects the myogenic potential of MuSCs. Using transcriptomic profiling, we identify WNT1 Inducible Signaling Pathway Protein 1 (WISP1) as a FAP-derived matricellular signal that is lost during aging. WISP1 is required for efficient muscle regeneration and controls the expansion and asymmetric commitment of MuSCs through Akt signaling. Transplantation of young FAPs or systemic treatment with WISP1 restores the myogenic capacity of MuSCs in aged mice and rescues skeletal muscle regeneration. Our work establishes that loss of WISP1 from FAPs contributes to MuSC dysfunction in aged skeletal muscles and demonstrates that this mechanism can be targeted to rejuvenate myogenesis.


Asunto(s)
Adipocitos/metabolismo , Envejecimiento/metabolismo , Proteínas CCN de Señalización Intercelular/metabolismo , Músculo Esquelético/metabolismo , Proteínas Proto-Oncogénicas/metabolismo , Células Madre/metabolismo , Adipocitos/citología , Adipogénesis , Animales , Proteínas CCN de Señalización Intercelular/deficiencia , Células Cultivadas , Humanos , Ratones , Ratones Endogámicos C57BL , Ratones Noqueados , Músculo Esquelético/citología , Proteínas Proto-Oncogénicas/deficiencia , Células Madre/citología
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...