Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 10 de 10
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
PLoS One ; 10(1): e0117076, 2015.
Artículo en Inglés | MEDLINE | ID: mdl-25607801

RESUMEN

Ubiquitin signaling mechanisms play fundamental roles in the cell-intrinsic control of neuronal morphogenesis and connectivity in the brain. However, whereas specific ubiquitin ligases have been implicated in key steps of neural circuit assembly, the roles of ubiquitin-specific proteases (USPs) in the establishment of neuronal connectivity have remained unexplored. Here, we report a comprehensive analysis of USP family members in granule neuron morphogenesis and positioning in the rodent cerebellum. We identify a set of 32 USPs that are expressed in granule neurons. We also characterize the subcellular localization of the 32 USPs in granule neurons using a library of expression plasmids encoding GFP-USPs. In RNAi screens of the 32 neuronally expressed USPs, we uncover novel functions for USP1, USP4, and USP20 in the morphogenesis of granule neuron dendrites and axons and we identify a requirement for USP30 and USP33 in granule neuron migration in the rodent cerebellar cortex in vivo. These studies reveal that specific USPs with distinct spatial localizations harbor key functions in the control of neuronal morphogenesis and positioning in the mammalian cerebellum, with important implications for our understanding of the cell-intrinsic mechanisms that govern neural circuit assembly in the brain.


Asunto(s)
Axones/metabolismo , Cerebelo/crecimiento & desarrollo , Dendritas/metabolismo , Proteasas Ubiquitina-Específicas/metabolismo , Animales , Células Cultivadas , Cerebelo/citología , Cerebelo/enzimología , Morfogénesis , Ratas , Transducción de Señal , Ubiquitina/metabolismo , Proteasas Ubiquitina-Específicas/genética
2.
Cell Rep ; 4(1): 19-30, 2013 Jul 11.
Artículo en Inglés | MEDLINE | ID: mdl-23831032

RESUMEN

Proteasomes drive the selective degradation of protein substrates with covalently linked ubiquitin chains in eukaryotes. Although proteasomes are distributed throughout the cell, specific biological functions of the proteasome in distinct subcellular locales remain largely unknown. We report that proteasomes localized at the centrosome regulate the degradation of local ubiquitin conjugates in mammalian neurons. We find that the proteasomal subunit S5a/Rpn10, a ubiquitin receptor that selects substrates for degradation, is essential for proteasomal activity at centrosomes in neurons and thereby promotes the elaboration of dendrite arbors in the rodent brain in vivo. We also find that the helix-loop-helix protein Id1 disrupts the interaction of S5a/Rpn10 with the proteasomal lid and thereby inhibits centrosomal proteasome activity and dendrite elaboration in neurons. Together, our findings define a function for a specific pool of proteasomes at the neuronal centrosome and identify a biological function for S5a/Rpn10 in the mammalian brain.


Asunto(s)
Encéfalo/metabolismo , Centrosoma/metabolismo , Dendritas/metabolismo , Complejo de la Endopetidasa Proteasomal/metabolismo , Animales , Encéfalo/citología , Dendritas/ultraestructura , Proteína 1 Inhibidora de la Diferenciación/genética , Proteína 1 Inhibidora de la Diferenciación/metabolismo , Complejo de la Endopetidasa Proteasomal/genética , Unión Proteica , Ratas
3.
Neuron ; 78(6): 986-93, 2013 Jun 19.
Artículo en Inglés | MEDLINE | ID: mdl-23791194

RESUMEN

Intellectual disability is a prevalent disorder that remains incurable. Mutations of the X-linked protein PHF6 cause the intellectual disability disorder Börjeson-Forssman-Lehmann syndrome (BFLS). However, the biological role of PHF6 relevant to BFLS pathogenesis has remained unknown. We report that knockdown of PHF6 profoundly impairs neuronal migration in the mouse cerebral cortex in vivo, leading to the formation of white matter heterotopias displaying neuronal hyperexcitability. We find that PHF6 physically associates with the PAF1 transcription elongation complex, and inhibition of PAF1 phenocopies the PHF6 knockdown-induced migration phenotype in vivo. We also identify Neuroglycan C/Chondroitin sulfate proteoglycan 5 (NGC/CSPG5), a potential schizophrenia susceptibility gene, as a critical downstream target of PHF6 in the control of neuronal migration. These findings define PHF6, PAF1, and NGC/CSPG5 as components of a cell-intrinsic transcriptional pathway that orchestrates neuronal migration in the brain, with important implications for the pathogenesis of developmental disorders of cognition.


Asunto(s)
Proteínas Portadoras/genética , Movimiento Celular/fisiología , Genes Ligados a X/genética , Proteínas de Homeodominio/genética , Discapacidad Intelectual/genética , Neuronas/fisiología , Animales , Encéfalo/citología , Encéfalo/fisiología , Proteínas Portadoras/metabolismo , Femenino , Técnicas de Silenciamiento del Gen/métodos , Proteínas de Homeodominio/metabolismo , Ratones , Embarazo , Unión Proteica/fisiología , Ratas , Proteínas Represoras
4.
Mol Biol Cell ; 23(21): 4323-32, 2012 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-22933572

RESUMEN

The AP-1 transcription factor c-Jun has been shown to be essential for stress-induced apoptosis in several models. However, the molecular mechanisms underlying the proapoptotic activity of c-Jun are poorly understood. We identify the apoptosis-antagonizing transcription factor (AATF) as a novel nucleolar stress sensor, which is required as a cofactor for c-Jun-mediated apoptosis. Overexpression or down-regulation of AATF expression levels led to a respective increase or decrease in the amount of activated and phosphorylated c-Jun with a proportional alteration in the induction levels of the proapoptotic c-Jun target genes FasL and TNF-α. Accordingly, AATF promoted commitment of ultraviolet (UV)-irradiated cells to c-Jun-dependent apoptosis. Whereas AATF overexpression potentiated UV-induced apoptosis in wild-type cells, c-Jun-deficient mouse embryonic fibroblasts were resistant to AATF-mediated apoptosis induction. Furthermore, AATF mutants defective in c-Jun binding were also defective in inducing AP-1 activity and c-Jun-mediated apoptosis. UV irradiation induced a translocation of AATF from the nucleolus to the nucleus, thereby enabling its physical association to c-Jun. Analysis of AATF deletion mutants revealed that the AATF domains required for compartmentalization, c-Jun binding, and enhancement of c-Jun transcriptional activity were all also required to induce c-Jun-dependent apoptosis. These results identify AATF as a nucleolar-confined c-Jun cofactor whose expression levels and spatial distribution determine the stress-induced activity of c-Jun and the levels of c-Jun-mediated apoptosis.


Asunto(s)
Proteínas Reguladoras de la Apoptosis/metabolismo , Apoptosis , Nucléolo Celular/metabolismo , Proteínas Nucleares/metabolismo , Proteínas Proto-Oncogénicas c-jun/metabolismo , Proteínas Represoras/metabolismo , Animales , Apoptosis/efectos de la radiación , Proteínas Reguladoras de la Apoptosis/química , Nucléolo Celular/efectos de la radiación , Embrión de Mamíferos/citología , Fibroblastos/citología , Fibroblastos/metabolismo , Fibroblastos/efectos de la radiación , Células HEK293 , Humanos , Ratones , Ratones Noqueados , Proteínas Nucleares/química , Unión Proteica/efectos de la radiación , Estructura Terciaria de Proteína , Transporte de Proteínas/efectos de la radiación , Proteínas Represoras/química , Rayos Ultravioleta
5.
J Biol Chem ; 287(27): 23216-26, 2012 Jun 29.
Artículo en Inglés | MEDLINE | ID: mdl-22584572

RESUMEN

ErbB4 is a receptor tyrosine kinase implicated in the development and homeostasis of the heart, central nervous system, and mammary gland. Cleavable isoforms of ErbB4 release a soluble intracellular domain (ICD) that can translocate to the nucleus and function as a transcriptional coregulator. In search of regulatory mechanisms of ErbB4 ICD function, we identified PIAS3 as a novel interaction partner of ErbB4 ICD. In keeping with the small ubiquitin-like modifier (SUMO) E3 ligase function of protein inhibitor of activated STAT (PIAS) proteins, we showed that the ErbB4 ICD is modified by SUMO, and that PIAS3 stimulates the SUMOylation. Upon overexpression of PIAS3, the ErbB4 ICD generated from the full-length receptor accumulated into the nucleus in a manner that was dependent on the functional nuclear localization signal of ErbB4. In the nucleus, ErbB4 colocalized with PIAS3 and SUMO-1 in promyelocytic leukemia nuclear bodies, nuclear domains involved in regulation of transcription. Accordingly, PIAS3 overexpression had an effect on the transcriptional coregulatory activity of ErbB4, repressing its ability to coactivate transcription with Yes-associated protein. Finally, knockdown of PIAS3 with siRNA partially rescued the inhibitory effect of the ErbB4 ICD on differentiation of MDA-MB-468 breast cancer and HC11 mammary epithelial cells. Our findings illustrate that PIAS3 is a novel regulator of ErbB4 receptor tyrosine kinase, controlling its nuclear sequestration and function.


Asunto(s)
Transporte Activo de Núcleo Celular/fisiología , Receptores ErbB/metabolismo , Chaperonas Moleculares/metabolismo , Proteínas Inhibidoras de STAT Activados/metabolismo , Sumoilación/fisiología , Animales , Neoplasias de la Mama , Células COS , Núcleo Celular/metabolismo , Chlorocebus aethiops , Receptores ErbB/química , Receptores ErbB/genética , Femenino , Células HEK293 , Humanos , Glándulas Mamarias Humanas/citología , Glándulas Mamarias Humanas/metabolismo , Chaperonas Moleculares/genética , Proteínas Nucleares/metabolismo , Proteínas de Unión a Poli-ADP-Ribosa , Proteína de la Leucemia Promielocítica , Proteínas Inhibidoras de STAT Activados/genética , Dominios y Motivos de Interacción de Proteínas/fisiología , Estructura Terciaria de Proteína/fisiología , ARN Interferente Pequeño/genética , Receptor ErbB-4 , Transducción de Señal/fisiología , Proteínas Modificadoras Pequeñas Relacionadas con Ubiquitina/metabolismo , Factores de Transcripción/metabolismo , Proteínas Supresoras de Tumor/metabolismo
6.
Annu Rev Biochem ; 80: 1089-115, 2011.
Artículo en Inglés | MEDLINE | ID: mdl-21417720

RESUMEN

To dampen proteotoxic stresses and maintain protein homeostasis, organisms possess a stress-responsive molecular machinery that detects and neutralizes protein damage. A prominent feature of stressed cells is the increased synthesis of heat shock proteins (Hsps) that aid in the refolding of misfolded peptides and restrain protein aggregation. Transcriptional activation of the heat shock response is orchestrated by heat shock factor 1 (HSF1), which rapidly translocates to hsp genes and induces their expression. Although the role of HSF1 in protecting cells and organisms against severe stress insults is well established, many aspects of how HSF1 senses qualitatively and quantitatively different forms of stresses have remained poorly understood. Moreover, recent discoveries that HSF1 controls life span have prompted new ways of thinking about an old transcription factor. Here, we review the established role of HSF1 in counteracting cell stress and prospect the role of HSF1 as a regulator of disease states and aging.


Asunto(s)
Envejecimiento/fisiología , Proteínas de Unión al ADN/metabolismo , Enfermedad , Respuesta al Choque Térmico/fisiología , Factores de Transcripción/metabolismo , Animales , Proteínas de Unión al ADN/genética , Factores de Transcripción del Choque Térmico , Humanos , Modelos Moleculares , Procesamiento Proteico-Postraduccional , Transducción de Señal/fisiología , Factores de Transcripción/genética , Activación Transcripcional
7.
Science ; 323(5917): 1063-6, 2009 Feb 20.
Artículo en Inglés | MEDLINE | ID: mdl-19229036

RESUMEN

Heat shock factor 1 (HSF1) is essential for protecting cells from protein-damaging stress associated with misfolded proteins and regulates the insulin-signaling pathway and aging. Here, we show that human HSF1 is inducibly acetylated at a critical residue that negatively regulates DNA binding activity. Activation of the deacetylase and longevity factor SIRT1 prolonged HSF1 binding to the heat shock promoter Hsp70 by maintaining HSF1 in a deacetylated, DNA-binding competent state. Conversely, down-regulation of SIRT1 accelerated the attenuation of the heat shock response (HSR) and release of HSF1 from its cognate promoter elements. These results provide a mechanistic basis for the requirement of HSF1 in the regulation of life span and establish a role for SIRT1 in protein homeostasis and the HSR.


Asunto(s)
Senescencia Celular/fisiología , Proteínas de Unión al ADN/metabolismo , Proteínas HSP70 de Choque Térmico/genética , Respuesta al Choque Térmico , Regiones Promotoras Genéticas , Sirtuinas/metabolismo , Estrés Psicológico , Factores de Transcripción/metabolismo , Acetilación , Secuencia de Aminoácidos , Animales , Inmunoprecipitación de Cromatina , ADN/metabolismo , Regulación hacia Abajo , Células HeLa , Factores de Transcripción del Choque Térmico , Homeostasis , Humanos , Ratones , Datos de Secuencia Molecular , ARN Interferente Pequeño , Sirtuina 1 , Sirtuinas/genética , Transfección
8.
Adv Exp Med Biol ; 594: 78-88, 2007.
Artículo en Inglés | MEDLINE | ID: mdl-17205677

RESUMEN

The transition from normal growth conditions to stressful conditions is accompanied by a robust upregulation of heat shock proteins, which dampen the cytotoxicity caused by misfolded and denatured proteins. The most prominent part of this transition occurs on the transcriptional level. In mammals, protein-damaging stress leads to the activation of heat shock factor 1 (HSF1), which binds to upstream regulatory sequences in the promoters of heat shock genes. The activation of HSF1 proceeds through a multi-step pathway, involving a monomer-to-trimer transition, nuclear accumulation and extensive posttranslational modifications. In addition to its established role as the main regulator of heat shock genes, new data link HSF 1 to developmental pathways. In this chapter, we examine the established stress-related functions and prospect the intriguing role of HSF 1 as a developmental coordinator.


Asunto(s)
Proteínas de Unión al ADN/metabolismo , Regulación del Desarrollo de la Expresión Génica , Factores de Transcripción/metabolismo , Animales , Citocinas/genética , Citocinas/metabolismo , Proteínas de Unión al ADN/química , Proteínas de Unión al ADN/genética , Factores de Transcripción del Choque Térmico , Humanos , Unión Proteica , Estructura Terciaria de Proteína , Factores de Transcripción/química , Factores de Transcripción/genética , Activación Transcripcional
9.
Mol Cell Biol ; 26(3): 955-64, 2006 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-16428449

RESUMEN

Covalent modification of proteins by the small ubiquitin-related modifier SUMO regulates diverse biological functions. Sumoylation usually requires a consensus tetrapeptide, through which the binding of the SUMO-conjugating enzyme Ubc9 to the target protein is directed. However, additional specificity determinants are in many cases required. To gain insights into SUMO substrate selection, we have utilized the differential sumoylation of highly similar loop structures within the DNA-binding domains of heat shock transcription factor 1 (HSF1) and HSF2. Site-specific mutagenesis in combination with molecular modeling revealed that the sumoylation specificity is determined by several amino acids near the consensus site, which are likely to present the SUMO consensus motif to Ubc9. Importantly, we also demonstrate that sumoylation of the HSF2 loop impedes HSF2 DNA-binding activity, without affecting its oligomerization. Hence, SUMO modification of the HSF2 loop contributes to HSF-specific regulation of DNA binding and broadens the concept of sumoylation in the negative regulation of gene expression.


Asunto(s)
Proteínas de Unión al ADN/metabolismo , ADN/metabolismo , Proteínas de Choque Térmico/metabolismo , Procesamiento Proteico-Postraduccional , Proteínas Modificadoras Pequeñas Relacionadas con Ubiquitina/metabolismo , Factores de Transcripción/metabolismo , Secuencia de Aminoácidos , Animales , Células COS , Chlorocebus aethiops , Secuencia Conservada , Proteínas de Unión al ADN/genética , Factores de Transcripción del Choque Térmico , Proteínas de Choque Térmico/genética , Humanos , Ratones , Datos de Secuencia Molecular , Factores de Transcripción/genética , Transfección , Enzimas Ubiquitina-Conjugadoras/metabolismo
10.
Proc Natl Acad Sci U S A ; 103(1): 45-50, 2006 Jan 03.
Artículo en Inglés | MEDLINE | ID: mdl-16371476

RESUMEN

SUMO (small ubiquitin-like modifier) modification regulates many cellular processes, including transcription. Although sumoylation often occurs on specific lysines within the consensus tetrapeptide PsiKxE, other modifications, such as phosphorylation, may regulate the sumoylation of a substrate. We have discovered PDSM (phosphorylation-dependent sumoylation motif), composed of a SUMO consensus site and an adjacent proline-directed phosphorylation site (PsiKxExxSP). The highly conserved motif regulates phosphorylation-dependent sumoylation of multiple substrates, such as heat-shock factors (HSFs), GATA-1, and myocyte enhancer factor 2. In fact, the majority of the PDSM-containing proteins are transcriptional regulators. Within the HSF family, PDSM is conserved between two functionally distinct members, HSF1 and HSF4b, whose transactivation capacities are repressed through the phosphorylation-dependent sumoylation. As the first recurrent sumoylation determinant beyond the consensus tetrapeptide, the PDSM provides a valuable tool in predicting new SUMO substrates.


Asunto(s)
Secuencias de Aminoácidos/genética , Secuencia de Consenso/genética , Proteínas Modificadoras Pequeñas Relacionadas con Ubiquitina/metabolismo , Western Blotting , Ensayo de Cambio de Movilidad Electroforética , Proteínas de Choque Térmico/genética , Proteínas de Choque Térmico/metabolismo , Inmunoprecipitación , Luciferasas , Fosforilación , Elementos Reguladores de la Transcripción/genética , Reacción en Cadena de la Polimerasa de Transcriptasa Inversa
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...