Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
J Biomol Struct Dyn ; : 1-16, 2023 Sep 14.
Artículo en Inglés | MEDLINE | ID: mdl-37708006

RESUMEN

The impact of COVID-19 infection on individuals with small cell lung cancer (SCLC) poses a serious threat. Unfortunately, the molecular basis of this severe comorbidity has yet to be elucidated. The present study addresses this gap utilizing publicly available omics data of COVID-19 and SCLC to explore the key molecules and associated pathways involved in the convergence of these diseases. Findings revealed 402 genes, that exhibited differential expression patterns in SCLC patients and also play a pivotal role in COVID-19 pathogenesis. Subsequent functional enrichment analyses identified relevant ontologies and pathways that are significantly associated with these genes, revealing important insights into their potential biological, molecular and cellular functions. The protein-protein interaction network, constructed under four combinatorial topological assessments, highlighted SMAD3, CAV1, PIK3R1, and FN1 as the primary components to this comorbidity. Our results suggest that these components significantly regulate this cross-talk triggering the PI3K-AKT and TGF-ß signaling pathways. Lastly, this study made a multi-step computational attempt and identified corylifol A and ginkgetin from natural sources that can potentially inhibit these components. Therefore, the outcomes of this study offer novel perspectives on the common molecular mechanisms underlying SCLC and COVID-19 and present future opportunities for drug development.Communicated by Ramaswamy H. Sarma.

2.
J Biomol Struct Dyn ; 41(23): 14232-14247, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-36852684

RESUMEN

Cervical cancer (CC) is a global threat to women and our knowledge is frighteningly little about its underlying genomic contributors. Our research aimed to understand the underlying molecular and genetic mechanisms of CC by integrating bioinformatics and network-based study. Transcriptomic analyses of three microarray datasets identified 218 common differentially expressed genes (DEGs) within control samples and CC specimens. KEGG pathway analysis revealed pathways in cell cycle, drug metabolism, DNA replication and the significant GO terms were cornification, proteolysis, cell division and DNA replication. Protein-protein interaction (PPI) network analysis identified 20 hub genes and survival analyses validated CDC45, MCM2, PCNA and TOP2A as CC biomarkers. Subsequently, 10 transcriptional factors (TFs) and 10 post-transcriptional regulators were detected through TFs-DEGs and miRNAs-DEGs regulatory network assessment. Finally, the CC biomarkers were subjected to a drug-gene relationship analysis to find the best target inhibitors. Standard cheminformatics method including in silico ADMET and molecular docking study substantiated PD0325901 and Selumetinib as the most potent candidate-drug for CC treatment. Overall, this meticulous study holds promises for further in vitro and in vivo research on CC diagnosis, prognosis and therapies. Communicated by Ramaswamy H. Sarma.


Transcriptomic analysis through bioinformatics revealed 218 significant differentially expressed genes (DEGs) that unfolded new molecular pathways responsible for cervical cancer (CC); The PPI network sorted major hub-genes that can be accounted as potential biomarkers with prominent roles in CC progression and helpful for its diagnosis, prognosis and therapies;TFs-DEGs and miRNAs-DEGs regulatory network assessment detected transcriptional and post-transcriptional elements;The gene-set enrichment provided gene ontological terms and pathway enrichment analysis shared biological relevance of CC development;Integrated statistics and cheminformatics approaches predicted some highly potential candidate drugs against CC;All the outcomes of the study were cross-validated through survival analyses, molecular docking and literature review.


Asunto(s)
Neoplasias del Cuello Uterino , Humanos , Femenino , Neoplasias del Cuello Uterino/tratamiento farmacológico , Neoplasias del Cuello Uterino/genética , Simulación del Acoplamiento Molecular , Quimioinformática , Perfilación de la Expresión Génica/métodos , Biomarcadores de Tumor/genética , Biología Computacional/métodos
3.
J Biomol Struct Dyn ; 41(3): 833-855, 2023 02.
Artículo en Inglés | MEDLINE | ID: mdl-36617426

RESUMEN

Human cytomegalovirus (HCMV) is a widespread virus that can cause serious and irreversible neurological damage in newborns and even death in children who do not have the access to much-needed medications. While some vaccines and drugs are found to be effective against HCMV, their extended use has given rise to dose-limiting toxicities and the development of drug-resistant mutants among patients. Despite half a century's worth of research, the lack of a licensed HCMV vaccine heightens the need to develop newer antiviral therapies and vaccine candidates with improved effectiveness and reduced side effects. In this study, the immunoinformatics approach was utilized to design a potential polyvalent epitope-based vaccine effective against the four virulent strains of HCMV. The vaccine was constructed using seven CD8+ cytotoxic T lymphocytes epitopes, nine CD4+ helper T lymphocyte epitopes, and twelve linear B-cell lymphocyte epitopes that were predicted to be antigenic, non-allergenic, non-toxic, fully conserved, and non-human homologous. Subsequently, molecular docking study, protein-protein interaction analysis, molecular dynamics simulation (including the root mean square fluctuation (RMSF) and root mean square deviation (RMSD)), and immune simulation study rendered promising results assuring the vaccine to be stable, safe, and effective. Finally, in silico cloning was conducted to develop an efficient mass production strategy of the vaccine. However, further in vitro and in vivo research studies on the proposed vaccine are required to confirm its safety and efficacy.Communicated by Ramaswamy H. Sarma.


Asunto(s)
Citomegalovirus , Simulación de Dinámica Molecular , Recién Nacido , Humanos , Simulación del Acoplamiento Molecular , Epítopos de Linfocito T , Epítopos de Linfocito B , Vacunas de Subunidad , Biología Computacional/métodos
4.
Bioinformatics ; 38(Suppl 1): i19-i27, 2022 06 24.
Artículo en Inglés | MEDLINE | ID: mdl-35758800

RESUMEN

MOTIVATION: Wikipedia is one of the most important channels for the public communication of science and is frequently accessed as an educational resource in computational biology. Joint efforts between the International Society for Computational Biology (ISCB) and the Computational Biology taskforce of WikiProject Molecular Biology (a group of expert Wikipedia editors) have considerably improved computational biology representation on Wikipedia in recent years. However, there is still an urgent need for further improvement in quality, especially when compared to related scientific fields such as genetics and medicine. Facilitating involvement of members from ISCB Communities of Special Interest (COSIs) would improve a vital open education resource in computational biology, additionally allowing COSIs to provide a quality educational resource highly specific to their subfield. RESULTS: We generate a list of around 1500 English Wikipedia articles relating to computational biology and describe the development of a binary COSI-Article matrix, linking COSIs to relevant articles and thereby defining domain-specific open educational resources. Our analysis of the COSI-Article matrix data provides a quantitative assessment of computational biology representation on Wikipedia against other fields and at a COSI-specific level. Furthermore, we conducted similarity analysis and subsequent clustering of COSI-Article data to provide insight into potential relationships between COSIs. Finally, based on our analysis, we suggest courses of action to improve the quality of computational biology representation on Wikipedia.


Asunto(s)
Biología Computacional , Análisis por Conglomerados
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...