Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Phys Chem Chem Phys ; 25(35): 24081-24096, 2023 Sep 13.
Artículo en Inglés | MEDLINE | ID: mdl-37655469

RESUMEN

Structural disorder and low crystallinity render it challenging to characterise the atomic-level structure of layered double hydroxides (LDH). We report a novel multi-step, first-principles computational workflow for the analysis of paramagnetic solid-state NMR of complex inorganic systems such as LDH, which are commonly used as catalysts and energy storage materials. A series of 13CO32--labelled Mg2-xNixAl-LDH, x ranging from 0 (Mg2Al-LDH) to 2 (Ni2Al-LDH), features three distinct eigenvalues δ11, δ22 and δ33 of the experimental 13C chemical shift tensor. The δii correlate directly with the concentration of the paramagnetic Ni2+ and span a range of |δ11 - δ33| ≈ 90 ppm at x = 0, increasing to 950 ppm at x = 2. In contrast, the isotropic shift, δiso(13C), only varies by -14 ppm in the series. Detailed insight is obtained by computing (1) the orbital shielding by periodic density-functional theory involving interlayer water, (2) the long-range pseudocontact contribution of the randomly distributed Ni2+ ions in the cation layers (characterised by an ab initio susceptibility tensor) by a lattice sum, and (3) the close-range hyperfine terms using a full first-principles shielding machinery. A pseudohydrogen-terminated two-layer cluster model is used to compute (3), particularly the contact terms. Due to negative spin density contribution at the 13C site arising from the close-by Ni2+ sites, this step is necessary to reach a semiquantitative agreement with experiment. These findings influence future NMR investigations of the formally closed-shell interlayer species within LDH, such as the anions or water. Furthermore, the workflow is applicable to a variety of complex materials.

2.
Phys Chem Chem Phys ; 25(4): 3309-3322, 2023 Jan 27.
Artículo en Inglés | MEDLINE | ID: mdl-36630169

RESUMEN

The magnetic properties of the nickelalumite-type layered double hydroxides (LDH), MAl4(OH)12(SO4)·3H2O (MAl4-LDH) with M = Co2+ (S = 3/2), Ni2+ (S = 1), or Cu2+ (S = 1/2) were determined by a combined experimental and computational approach. They represent three new inorganic, low-dimensional magnetic systems with a defect-free, structurally ordered magnetic lattice. They exhibit no sign of magnetic ordering down to 2 K in contrast to conventional hydrotalcite LDH. Detailed insight into the complex interplay between the choice of magnetic ion (M2+) and magnetic properties was obtained by a combination of magnetic susceptibility, heat capacity, neutron scattering, solid-state NMR spectroscopy, and first-principles calculations. The NiAl4- and especially CoAl4-LDH have pronounced zero-field splitting (ZFS, easy-axis and easy-plane, respectively) and weak ferromagnetic nearest-neighbour interactions. Thus, they are rare examples of predominantly zero-dimensional spin systems in dense, inorganic matrices. In contrast, CuAl4-LDH (S = 1/2) consists of weakly ferromagnetic S = 1/2 spin chains. For all three MAl4-LDH, good agreement is found between the experimental magnetic parameters (J, D, g) and first-principles quantum chemical calculations, which also predict that the interchain couplings are extremely weak (< 0.1 cm-1). Thus, our approach will be valuable for evaluation and prediction of magnetic properties in other inorganic materials.

3.
Inorg Chem ; 60(21): 16700-16712, 2021 Nov 01.
Artículo en Inglés | MEDLINE | ID: mdl-34669389

RESUMEN

The synthesis and thermal degradation of MAl4(OH)12SO4·3H2O layered double hydroxides with M = Co2+, Ni2+, Cu2+, and Zn2+ ("MAl4-LDH") were investigated by inductively coupled plasma-optical emission spectroscopy, thermogravimetric analysis, powder X-ray diffraction, Rietveld refinement, scanning electron microscopy, scanning tunnel electron microscopy, energy-dispersive X-ray spectroscopy, and solid-state 1H and 27Al NMR spectroscopy. Following extensive synthesis optimization, phase pure CoAl4- and NiAl4-LDH were obtained, whereas 10-12% unreacted bayerite (Al(OH)3) remained for the CuAl4-LDH. The optimum synthesis conditions are hydrothermal treatment at 120 °C for 14 days (NiAl4-LDH only 9 days) with MSO4(aq) concentrations of 1.4-2.8, 0.7-0.8, and 0.08 M for the CoAl4-, NiAl4-, and CuAl4-LDH, respectively. A pH ≈ 2 for the metal sulfate solutions is required to prevent the formation of byproducts, which were Ni(OH)2 and Cu3(SO4)(OH)4 for NiAl4- and CuAl4-LDH, respectively. The thermal degradation of the three MAl4-LDH and ZnAl4-LDH in a nitrogen atmosphere proceeds in three steps: (i) dehydration and dehydroxylation between 200 and 600 °C, (ii) loss of sulfate between 600 and 900 °C, and (iii) formation of the end products at 900-1200 °C. For CoAl4-LDH (ZnAl4-LDH), these are α-Al2O3 and CoAl2O4 (ZnAl2O4) spinel. For NiAl4-LDH, a spinel-like NiAl4O7 phase forms, whereas CuAl4-LDH degrades by a redox reaction yielding a diamagnetic CuAlO2 (delafossite structure) and α-Al2O3.

4.
Phys Chem Chem Phys ; 22(43): 25001-25010, 2020 Nov 21.
Artículo en Inglés | MEDLINE | ID: mdl-33112325

RESUMEN

Potassium chromium jarosite, KCr3(OH)6(SO4)2 (Cr-jarosite), is considered a promising candidate to display spin liquid behavior due to the strong magnetic frustration imposed by the crystal structure. However, the ground state magnetic properties have been debated, since Cr-jarosite is notoriously non-stoichiometric. Our study reports the magnetic properties for deuterated KCr3(OD)6(SO4)2 on chemically well-defined samples, which have been characteried by a combination of powder X-ray diffraction, neutron diffraction, solid state NMR spectroscopy, and scanning electron microscopy with energy dispersive spectroscopy. Eight polycrystalline samples, which all contained only 1-3% Cr vacancies were obtained. However, significant substitution (2-27%) of potassium with H2O and/or H3O+ was observed and resulted in pronounced stacking disorder along the c-axis. A clear second-order transition to an antiferromagnetically ordered phase at TN = 3.8(1) K with a small net moment of 0.03 µB per Cr3+-ion was obtained from vibrating sample magnetometry and temperature dependent neutron diffraction. The moment is attributed to spin canting caused by the Dzyaloshinskii-Moriya interaction. Thus, our experimental results imply that even ideal potassium chromium jarosite will exhibit magnetic order below 4 K and therefore it does not qualify as a true spin liquid material.

5.
Phys Chem Chem Phys ; 22(15): 8048-8059, 2020 Apr 15.
Artículo en Inglés | MEDLINE | ID: mdl-32239061

RESUMEN

13C solid-state MAS NMR spectra of a series of paramagnetic metal acetylacetonate complexes; [VO(acac)2] (d1, S = ½), [V(acac)3] (d2, S = 1), [Ni(acac)2(H2O)2] (d8, S = 1), and [Cu(acac)2] (d9, S = ½), were assigned using modern NMR shielding calculations. This provided a reliable assignment of the chemical shifts and a qualitative insight into the hyperfine couplings. Our results show a reversal of the isotropic 13C shifts, δiso(13C), for CH3 and CO between the d1 and d2versus the d8 and d9 acetylacetonate complexes. The CH3 shifts change from about -150 ppm (d1,2) to roughly 1000 ppm (d8,9), whereas the CO shifts decrease from 800 ppm to about 150 ppm for d1,2 and d8,9, respectively. This was rationalized by comparison of total spin-density plots and computed contact couplings to those corresponding to singly occupied molecular orbitals (SOMOs). This revealed the interplay between spin delocalization of the SOMOs and spin polarization of the lower-energy MOs, influenced by both the molecular symmetry and the d-electron configuration. A large positive chemical shift results from spin delocalization and spin polarization acting in the same direction, whereas their cancellation corresponds to a small shift. The SOMO(s) for the d8 and d9 complexes are σ-like, implying spin-delocalization on the CH3 and CO groups of the acac ligand, cancelled only for CO by spin polarization. In contrast, the SOMOs of the d1 and d2 systems are π-like and a large CO-shift results from spin polarization, which accounts for the reversed assignment of δiso(13C) for CH3 and CO.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...