Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Nucl Med Biol ; 132-133: 108905, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-38555651

RESUMEN

DOTATATE is a somatostatin peptide analog used in the clinic to detect somatostatin receptors which are highly expressed on neuroendocrine tumors. Somatostatin receptors are found naturally in the intestines, pancreas, lungs, and brain (mainly cortex). In vivo measurement of the somatostatin receptors in the cortex has been challenging because available tracers cannot cross the blood-brain barrier (BBB) due to their intrinsic polarity. A peptide called melittin, a main component of honeybee venom, has been shown to disrupt plasma membranes and increase the permeability of biological membranes. In this study, we assessed the feasibility of using melittin to facilitate the passage of [64Cu]Cu-DOTATATE through the BBB and its binding to somatostatin receptors in the cortex. Evaluation included in vitro autoradiography on Long Evans rat brains to estimate the binding affinity of [64Cu]Cu-DOTATATE to the somatostatin receptors in the cortex and an in vivo evaluation of [64Cu]Cu-DOTATATE binding in NMRI mice after injection of melittin. This study found an in vitro Bmax = 89 ± 4 nM and KD = 4.5 ± 0.6 nM in the cortex, resulting in a theoretical binding potential (BP) calculated as Bmax/KD ≈ 20, which is believed suitable for in vivo brain PET imaging. However, the in vivo results showed no significant difference between the control and melittin injected mice, indicating that the honeybee venom failed to open the BBB. Additional experiments, potentially involving faster injection rates are required to verify that melittin can increase brain uptake of non-BBB permeable PET tracers. Furthermore, an evaluation of whether a venom with a narrow therapeutic range can be used for clinical purposes needs to be considered.


Asunto(s)
Barrera Hematoencefálica , Estudios de Factibilidad , Meliteno , Compuestos Organometálicos , Tomografía de Emisión de Positrones , Receptores de Somatostatina , Animales , Receptores de Somatostatina/metabolismo , Meliteno/química , Meliteno/metabolismo , Ratas , Tomografía de Emisión de Positrones/métodos , Compuestos Organometálicos/química , Compuestos Organometálicos/metabolismo , Compuestos Organometálicos/farmacocinética , Barrera Hematoencefálica/metabolismo , Barrera Hematoencefálica/diagnóstico por imagen , Masculino , Ratones , Radioisótopos de Cobre , Octreótido/análogos & derivados
2.
Nucl Med Biol ; 128-129: 108877, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-38232579

RESUMEN

Brain pretargeted nuclear imaging for the diagnosis of various neurodegenerative diseases is a quickly developing field. The tetrazine ligation is currently the most explored approach to achieve this goal due to its remarkable properties. In this work, we evaluated the performance of F-537-Tetrazine, previously developed by Biogen, and N-(3-[18F]fluoro-5-(1,2,4,5-tetrazin-3-yl)benzyl)propan-1-amine, previously developed in our group, thereby allowing for the direct comparison of these two imaging probes. The evaluation included synthesis, radiolabeling and a comparison of the physicochemical properties of the compounds. Furthermore, their performance was evaluated by in vitro and in vivo pretargeting models. This study indicated that N-(3-[18F] fluoro-5-(1,2,4,5-tetrazin-3-yl)benzyl)propan-1-amine might be more suited for brain pretargeted imaging.


Asunto(s)
Aminas , Compuestos Heterocíclicos , Tomografía de Emisión de Positrones/métodos , Encéfalo/diagnóstico por imagen
3.
iScience ; 26(7): 107085, 2023 Jul 21.
Artículo en Inglés | MEDLINE | ID: mdl-37361875

RESUMEN

The severe acute respiratory syndrome coronavirus 2 (SARS-CoV2) Omicron variant sub-lineages spread rapidly worldwide, mostly due to their immune-evasive properties. This has put a significant part of the population at risk for severe disease and underscores the need for effective anti-SARS-CoV-2 agents against emergent strains in vulnerable patients. Camelid nanobodies are attractive therapeutic candidates due to their high stability, ease of large-scale production, and potential for delivery via inhalation. Here, we characterize the receptor binding domain (RBD)-specific nanobody W25 and show superior neutralization activity toward Omicron sub-lineages in comparison to all other SARS-CoV2 variants. Structure analysis of W25 in complex with the SARS-CoV2 spike glycoprotein shows that W25 engages an RBD epitope not covered by any of the antibodies previously approved for emergency use. In vivo evaluation of W25 prophylactic and therapeutic treatments across multiple SARS-CoV-2 variant infection models, together with W25 biodistribution analysis in mice, demonstrates favorable pre-clinical properties. Together, these data endorse W25 for further clinical development.

4.
Molecules ; 27(13)2022 Jun 22.
Artículo en Inglés | MEDLINE | ID: mdl-35807267

RESUMEN

Radiolabeling of tetrazines has gained increasing attention due to their important role in pretargeted imaging or therapy. The most commonly used radionuclide in PET imaging is fluorine-18. For this reason, we have recently developed a method which enables the direct aromatic 18F-fluorination of tetrazines using stannane precursors through copper-mediated fluorinations. Herein, we further optimized this labeling procedure. 3-(3-fluorophenyl)-1,2,4,5-tetrazine was chosen for this purpose because of its high reactivity and respective limited stability during the labeling process. By optimizing parameters such as elution conditions, precursor amount, catalyst, time or temperature, the radiochemical yield (RCY) could be increased by approximately 30%. These conditions were then applied to optimize the RCY of a recently successfully developed and promising pretargeting imaging agent. This agent could be isolated in a decay corrected RCY of 14 ± 3% and Am of 201 ± 30 GBq/µmol in a synthesis time of 70 min. Consequently, the RCY increased by 27%.


Asunto(s)
Radioisótopos de Flúor , Compuestos Heterocíclicos , Halogenación , Marcaje Isotópico/métodos , Tomografía de Emisión de Positrones/métodos , Radioquímica , Radiofármacos
5.
Front Synaptic Neurosci ; 13: 715811, 2021.
Artículo en Inglés | MEDLINE | ID: mdl-34867258

RESUMEN

Parkinson's disease (PD) is caused by progressive neurodegeneration and characterised by motor dysfunction. Neurodegeneration of dopaminergic neurons also causes aberrations within the cortico-striato-thalamo-cortical (CSTC) circuit, which has been hypothesised to lead to non-motor symptoms such as depression. Individuals with PD have both lower synaptic density and changes in neuronal metabolic function in the basal ganglia, as measured using [11C]UCB-J and [18F]FDG positron emission tomography (PET), respectively. However, the two radioligands have not been directly compared in the same PD subject or in neurodegeneration animal models. Here, we investigate [11C]UCB-J binding and [18F]FDG uptake in the CSTC circuit following a unilateral dopaminergic lesion in rats and compare it to sham lesioned rats. Rats received either a unilateral injection of 6-hydroxydopamine (6-OHDA) or saline in the medial forebrain bundle and rostral substantia nigra (n = 4/group). After 3 weeks, all rats underwent two PET scans using [18F]FDG, followed by [11C]UCB-J on a separate day. [18F]FDG uptake and [11C]UCB-J binding were both lower in the ipsilateral striatal regions compared to the contralateral regions. Using [11C]UCB-J, we could detect an 8.7% decrease in the ipsilateral ventral midbrain, compared to a 2.9% decrease in ventral midbrain using [18F]FDG. Differential changes between hemispheres for [11C]UCB-J and [18F]FDG outcomes were also evident in the CSTC circuit's cortical regions, especially in the orbitofrontal cortex and medial prefrontal cortex where higher synaptic density yet lower neuronal metabolic function was observed, following lesioning. In conclusion, [11C]UCB-J and [18F]FDG PET can detect divergent changes following a dopaminergic lesion in rats, especially in cortical regions that are not directly affected by the neurotoxin. These results suggest that combined [11C]UCB-J and [18F]FDG scans could yield a better picture of the heterogeneous cerebral changes in neurodegenerative disorders.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...