Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 51
Filtrar
1.
Brain Commun ; 6(2): fcae114, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-38650831

RESUMEN

The sortilin-related receptor 1 (SORL1) gene, encoding the cellular endosomal sorting-related receptor with A-type repeats (SORLA), is now established as a causal gene for Alzheimer's disease. As the latest addition to the list of causal genes, the pathophysiological effects and biomarker potential of SORL1 variants remain relatively undiscovered. Metabolic dysfunction is, however, well described in patients with Alzheimer's disease and is used as an imaging biomarker in clinical diagnosis settings. To understand the metabolic consequences of loss-of-function SORL1 mutations, we applied two metabolic MRI technologies, sodium (23Na) MRI and MRI with hyperpolarized [1-13C]pyruvate, in minipigs and mice with compromised expression of SORL1. At the age analysed here, both animal models display no conventional imaging evidence of neurodegeneration but show biochemical signs of elevated amyloid production, thus representing the early preclinical disease. With hyperpolarized MRI, the exchange from [1-13C]pyruvate to [1-13C]lactate and 13C-bicarbonate was decreased by 32 and 23%, respectively, in the cerebrum of SORL1-haploinsufficient minipigs. A robust 11% decrease in the sodium content was observed with 23Na-MRI in the same minipigs. Comparably, the brain sodium concentration gradually decreased from control to SORL1 haploinsufficient (-11%) to SORL1 knockout mice (-23%), suggesting a gene dose dependence in the metabolic dysfunction. The present study highlights that metabolic MRI technologies are sensitive to the functional, metabolic consequences of Alzheimer's disease and Alzheimer's disease-linked genotypes. Further, the study suggests a potential avenue of research into the mechanisms of metabolic alterations by SORL1 mutations and their potential role in neurodegeneration.

2.
EMBO Rep ; 25(5): 2278-2305, 2024 May.
Artículo en Inglés | MEDLINE | ID: mdl-38499808

RESUMEN

SorLA, encoded by the gene SORL1, is an intracellular sorting receptor of the VPS10P domain receptor gene family. Although SorLA is best recognized for its ability to shuttle target proteins between intracellular compartments in neurons, recent data suggest that also its microglial expression can be of high relevance for the pathogenesis of brain diseases, including glioblastoma (GBM). Here, we interrogated the impact of SorLA on the functional properties of glioma-associated microglia and macrophages (GAMs). In the GBM microenvironment, GAMs are re-programmed and lose the ability to elicit anti-tumor responses. Instead, they acquire a glioma-supporting phenotype, which is a key mechanism promoting glioma progression. Our re-analysis of published scRNA-seq data from GBM patients revealed that functional phenotypes of GAMs are linked to the level of SORL1 expression, which was further confirmed using in vitro models. Moreover, we demonstrate that SorLA restrains secretion of TNFα from microglia to restrict the inflammatory potential of these cells. Finally, we show that loss of SorLA exacerbates the pro-inflammatory response of microglia in the murine model of glioma and suppresses tumor growth.


Asunto(s)
Neoplasias Encefálicas , Glioma , Proteínas Relacionadas con Receptor de LDL , Proteínas de Transporte de Membrana , Microglía , Microambiente Tumoral , Factor de Necrosis Tumoral alfa , Animales , Humanos , Ratones , Encéfalo/metabolismo , Encéfalo/patología , Neoplasias Encefálicas/metabolismo , Neoplasias Encefálicas/patología , Neoplasias Encefálicas/genética , Línea Celular Tumoral , Modelos Animales de Enfermedad , Glioblastoma/metabolismo , Glioblastoma/patología , Glioblastoma/genética , Glioma/metabolismo , Glioma/patología , Glioma/genética , Macrófagos/metabolismo , Proteínas de Transporte de Membrana/metabolismo , Proteínas de Transporte de Membrana/genética , Microglía/metabolismo , Microglía/patología , Factor de Necrosis Tumoral alfa/metabolismo , Proteínas Relacionadas con Receptor de LDL/genética , Proteínas Relacionadas con Receptor de LDL/metabolismo
3.
Philos Trans R Soc Lond B Biol Sci ; 379(1899): 20220377, 2024 Apr 08.
Artículo en Inglés | MEDLINE | ID: mdl-38368933

RESUMEN

SORLA, the protein encoded by the SORL1 gene, has an important role in recycling cargo proteins to the cell surface. While SORLA loss-of-function variants occur almost exclusively in Alzheimer's disease cases, the majority of SORL1 variants are missense variants that are individually rare and can have individual mechanisms how they impair SORLA function as well as have individual effect size on disease risk. However, since carriers mostly come from small pedigrees, it is challenging to determine variant penetrance, leaving clinical significance associated with most missense variants unclear. In this article, we present functional approaches to evaluate the pathogenicity of a SORL1 variant, p.D1105H. First, we generated our mutant receptor by inserting the D1105H variant into the full-length SORLA-WT receptor. Then using western blot analysis we quantified the effect of the mutation on maturation and shedding of the receptor for transfected cells, and finally applied a flow cytometry approach to quantify SORLA expression at the cell surface. The results showed decreased maturation, decreased shedding, and decreased cell surface expression of D1105H compared with wild-type SORLA. We propose how these approaches can be used to functionally assess the pathogenicity of SORL1 variants in the future. This article is part of a discussion meeting issue 'Understanding the endo-lysosomal network in neurodegeneration'.


Asunto(s)
Enfermedad de Alzheimer , Humanos , Virulencia , Mutación , Enfermedad de Alzheimer/genética , Predisposición Genética a la Enfermedad , Proteínas Relacionadas con Receptor de LDL/genética , Proteínas Relacionadas con Receptor de LDL/metabolismo , Proteínas de Transporte de Membrana/genética
4.
Acta Neuropathol ; 147(1): 20, 2024 01 20.
Artículo en Inglés | MEDLINE | ID: mdl-38244079

RESUMEN

The SORL1 gene has recently emerged as a strong Alzheimer's Disease (AD) risk gene. Over 500 different variants have been identified in the gene and the contribution of individual variants to AD development and progression is still largely unknown. Here, we describe a family consisting of 2 parents and 5 offspring. Both parents were affected with dementia and one had confirmed AD pathology with an age of onset > 75 years. All offspring were affected with AD with ages at onset ranging from 53 years to 74 years. DNA was available from the parent with confirmed AD and 5 offspring. We identified a coding variant, p.(Arg953Cys), in SORL1 in 5 of 6 individuals affected by AD. Notably, variant carriers had severe AD pathology, and the SORL1 variant segregated with TDP-43 pathology (LATE-NC). We further characterized this variant and show that this Arginine substitution occurs at a critical position in the YWTD-domain of the SORL1 translation product, SORL1. Functional studies further show that the p.R953C variant leads to retention of the SORL1 protein in the endoplasmic reticulum which leads to decreased maturation and shedding of the receptor and prevents its normal endosomal trafficking. Together, our analysis suggests that p.R953C is a pathogenic variant of SORL1 and sheds light on mechanisms of how missense SORL1 variants may lead to AD.


Asunto(s)
Enfermedad de Alzheimer , Humanos , Anciano , Enfermedad de Alzheimer/genética , Frecuencia de los Genes , Predisposición Genética a la Enfermedad , Proteínas de Transporte de Membrana/genética , Mutación Missense , Proteínas Relacionadas con Receptor de LDL/genética , Polimorfismo de Nucleótido Simple
6.
J Biotechnol ; 375: 17-27, 2023 Sep 20.
Artículo en Inglés | MEDLINE | ID: mdl-37634829

RESUMEN

Reduced levels of the Sortilin-related receptor with A-type repeats (SORLA) in different brain regions as well as in the cerebrospinal fluid have been associated with Alzheimer's disease. Methods and reagents to develop reliable detection assays to quantify SORLA and its specific isoforms are therefore much needed. Nanobodies (Nbs) are unique biomolecules derived from the blood of camelids that display advantageous physicochemical and antigen affinity properties, making them attractive tools with great relevance to both diagnostic and therapeutic applications. Here, we purified and characterized eight Nbs that were isolated from the blood of an alpaca immunized with the recombinant extracellular domain of SORLA. The selected Nbs showed high affinity to SORLA in the low nanomolar range as observed by surface plasmon resonance. For mapping of the Nbs' epitopes within the antigen, we transiently transfected HEK293 cells with a panel of SORLA deletion constructs, and developed a protocol of immunostaining by applying fluorescent dye conjugated Nbs. With this method, we showed that the selected Nbs specifically recognize a part of SORLA containing Fibronectin-type III domains, representing promising tools not only for disease clarifying research, but also for translational medicine as candidates for clinical diagnostic purposes.


Asunto(s)
Enfermedad de Alzheimer , Anticuerpos de Dominio Único , Humanos , Anticuerpos de Dominio Único/genética , Mapeo Epitopo , Células HEK293 , Epítopos
7.
bioRxiv ; 2023 Nov 13.
Artículo en Inglés | MEDLINE | ID: mdl-37461597

RESUMEN

The SORL1 gene has recently emerged as a strong Alzheimer's Disease (AD) risk gene. Over 500 different variants have been identified in the gene and the contribution of individual variants to AD development and progression is still largely unknown. Here, we describe a family consisting of 2 parents and 5 offspring. Both parents were affected with dementia and one had confirmed AD pathology with an age of onset >75 years. All offspring were affected with AD with ages at onset ranging from 53yrs-74yrs. DNA was available from the parent with confirmed AD and 5 offspring. We identified a coding variant, p.(Arg953Cys), in SORL1 in 5 of 6 individuals affected by AD. Notably, variant carriers had severe AD pathology, and the SORL1 variant segregated with TDP-43 pathology (LATE-NC). We further characterized this variant and show that this Arginine substitution occurs at a critical position in the YWTD-domain of the SORL1 translation product, SORL1. Functional studies further show that the p.R953C variant leads to retention of the SORL1 protein in the endoplasmic reticulum which leads to decreased maturation and shedding of the receptor and prevents its normal endosomal trafficking. Together, our analysis suggests that p.R953C is a pathogenic variant of SORL1 and sheds light on mechanisms of how missense SORL1 variants may lead to AD.

8.
Proc Natl Acad Sci U S A ; 120(4): e2212180120, 2023 01 24.
Artículo en Inglés | MEDLINE | ID: mdl-36652482

RESUMEN

SORL1, the gene encoding the large multidomain SORLA protein, has emerged as only the fourth gene that when mutated can by itself cause Alzheimer's disease (AD), and as a gene reliably linked to both the early- and late-onset forms of the disease. SORLA is known to interact with the endosomal trafficking regulatory complex called retromer in regulating the recycling of endosomal cargo, including the amyloid precursor protein (APP) and the glutamate receptor GluA1. Nevertheless, SORLA's precise structural-functional relationship in endosomal recycling tubules remains unknown. Here, we address these outstanding questions by relying on crystallographic and artificial-intelligence evidence to generate a structural model for how SORLA folds and fits into retromer-positive endosomal tubules, where it is found to dimerize via both SORLA's fibronectin-type-III (3Fn)- and VPS10p-domains. Moreover, we identify a SORLA fragment comprising the 3Fn-, transmembrane, and cytoplasmic domains that has the capacity to form a dimer, and to enhance retromer-dependent recycling of APP by decreasing its amyloidogenic processing. Collectively, these observations generate a model for how SORLA dimer (and possibly polymer) formation can function in stabilizing and enhancing retromer function at endosome tubules. These findings can inform investigation of the many AD-associated SORL1 variants for evidence of pathogenicity and can guide discovery of novel drugs for the disease.


Asunto(s)
Enfermedad de Alzheimer , Proteínas Relacionadas con Receptor de LDL , Proteínas de Transporte de Membrana , Humanos , Enfermedad de Alzheimer/genética , Enfermedad de Alzheimer/metabolismo , Precursor de Proteína beta-Amiloide/genética , Precursor de Proteína beta-Amiloide/metabolismo , Dimerización , Proteínas Relacionadas con Receptor de LDL/metabolismo , Proteínas de Transporte de Membrana/metabolismo , Transporte de Proteínas
9.
Mol Neurodegener ; 17(1): 74, 2022 11 18.
Artículo en Inglés | MEDLINE | ID: mdl-36397124

RESUMEN

The family of VPS10p-Domain (D) receptors comprises five members named SorLA, Sortilin, SorCS1, SorCS2 and SorCS3. While their physiological roles remain incompletely resolved, they have been recognized for their signaling engagements and trafficking abilities, navigating a number of molecules between endosome, Golgi compartments, and the cell surface. Strikingly, recent studies connected all the VPS10p-D receptors to Alzheimer's disease (AD) development. In addition, they have been also associated with diseases comorbid with AD such as diabetes mellitus and major depressive disorder. This systematic review elaborates on genetic, functional, and mechanistic insights into how dysfunction in VPS10p-D receptors may contribute to AD etiology, AD onset diversity, and AD comorbidities. Starting with their functions in controlling cellular trafficking of amyloid precursor protein and the metabolism of the amyloid beta peptide, we present and exemplify how these receptors, despite being structurally similar, regulate various and distinct cellular events involved in AD. This includes a plethora of signaling crosstalks that impact on neuronal survival, neuronal wiring, neuronal polarity, and synaptic plasticity. Signaling activities of the VPS10p-D receptors are especially linked, but not limited to, the regulation of neuronal fitness and apoptosis via their physical interaction with pro- and mature neurotrophins and their receptors. By compiling the functional versatility of VPS10p-D receptors and their interactions with AD-related pathways, we aim to further propel the AD research towards VPS10p-D receptor family, knowledge that may lead to new diagnostic markers and therapeutic strategies for AD patients.


Asunto(s)
Enfermedad de Alzheimer , Trastorno Depresivo Mayor , Humanos , Péptidos beta-Amiloides , Transporte de Proteínas/fisiología , Factores de Crecimiento Nervioso
10.
Cell Rep Med ; 3(9): 100740, 2022 09 20.
Artículo en Inglés | MEDLINE | ID: mdl-36099918

RESUMEN

The established causal genes in Alzheimer's disease (AD), APP, PSEN1, and PSEN2, are functionally characterized using biomarkers, capturing an in vivo profile reflecting the disease's initial preclinical phase. Mutations in SORL1, encoding the endosome recycling receptor SORLA, are found in 2%-3% of individuals with early-onset AD, and SORL1 haploinsufficiency appears to be causal for AD. To test whether SORL1 can function as an AD causal gene, we use CRISPR-Cas9-based gene editing to develop a model of SORL1 haploinsufficiency in Göttingen minipigs, taking advantage of porcine models for biomarker investigations. SORL1 haploinsufficiency in young adult minipigs is found to phenocopy the preclinical in vivo profile of AD observed with APP, PSEN1, and PSEN2, resulting in elevated levels of ß-amyloid (Aß) and tau preceding amyloid plaque formation and neurodegeneration, as observed in humans. Our study provides functional support for the theory that SORL1 haploinsufficiency leads to endosome cytopathology with biofluid hallmarks of autosomal dominant AD.


Asunto(s)
Enfermedad de Alzheimer , Enfermedad de Alzheimer/genética , Péptidos beta-Amiloides/genética , Animales , Biomarcadores , Haploinsuficiencia/genética , Humanos , Proteínas Relacionadas con Receptor de LDL/genética , Proteínas de Transporte de Membrana/genética , Porcinos , Porcinos Enanos/metabolismo
11.
Front Cell Neurosci ; 16: 856734, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-35634462

RESUMEN

Peripheral nerve regeneration relies on the ability of Schwann cells to support the regrowth of damaged axons. Schwann cells re-differentiate when reestablishing contact with the sprouting axons, with large fibers becoming remyelinated and small nociceptive fibers ensheathed and collected into Remak bundles. We have previously described how the receptor sortilin facilitates neurotrophin signaling in peripheral neurons via regulated trafficking of Trk receptors. This study aims to characterize the effects of sortilin deletion on nerve regeneration following sciatic crush injury. We found that Sort1 - / - mice displayed functional motor recovery like that of WT mice, with no detectable differences in relation to nerve conduction velocities and morphological aspects of myelinated fibers. In contrast, we found abnormal ensheathment of regenerated C-fibers in injured Sort1 - / - mice, demonstrating a role of sortilin for Remak bundle formation following injury. Further studies on Schwann cell signaling pathways showed a significant reduction of MAPK/ERK, RSK, and CREB phosphorylation in Sort1 - / - Schwann cells after stimulation with neurotrophin-3 (NT-3), while Schwann cell migration and myelination remained unaffected. In conclusion, our results demonstrate that loss of sortilin blunts NT-3 signaling in Schwann cells which might contribute to the impaired Remak bundle regeneration after sciatic nerve injury.

12.
Cell Mol Life Sci ; 79(3): 162, 2022 Feb 28.
Artículo en Inglés | MEDLINE | ID: mdl-35226190

RESUMEN

BACKGROUND: Loss of the Sortilin-related receptor 1 (SORL1) gene seems to act as a causal event for Alzheimer's disease (AD). Recent studies have established that loss of SORL1, as well as mutations in autosomal dominant AD genes APP and PSEN1/2, pathogenically converge by swelling early endosomes, AD's cytopathological hallmark. Acting together with the retromer trafficking complex, SORL1 has been shown to regulate the recycling of the amyloid precursor protein (APP) out of the endosome, contributing to endosomal swelling and to APP misprocessing. We hypothesized that SORL1 plays a broader role in neuronal endosomal recycling and used human induced pluripotent stem cell-derived neurons (hiPSC-Ns) to test this hypothesis. We examined endosomal recycling of three transmembrane proteins linked to AD pathophysiology: APP, the BDNF receptor Tropomyosin-related kinase B (TRKB), and the glutamate receptor subunit AMPA1 (GLUA1). METHODS: We used isogenic hiPSCs engineered to have SORL1 depleted or to have enhanced SORL1 expression. We differentiated neurons from these cell lines and mapped the trafficking of APP, TRKB and GLUA1 within the endosomal network using confocal microscopy. We also performed cell surface recycling and lysosomal degradation assays to assess the functionality of the endosomal network in both SORL1-depleted and -overexpressing neurons. The functional impact of GLUA1 recycling was determined by measuring synaptic activity. Finally, we analyzed alterations in gene expression in SORL1-depleted neurons using RNA sequencing. RESULTS: We find that as with APP, endosomal trafficking of GLUA1 and TRKB is impaired by loss of SORL1. We show that trafficking of all three cargoes to late endosomes and lysosomes is affected by manipulating SORL1 expression. We also show that depletion of SORL1 significantly impacts the endosomal recycling pathway for APP and GLUA1 at the level of the recycling endosome and trafficking to the cell surface. This has a functional effect on neuronal activity as shown by multi-electrode array (MEA). Conversely, increased SORL1 expression enhances endosomal recycling for APP and GLUA1. Our unbiased transcriptomic data further support SORL1's role in endosomal recycling. We observe altered expression networks that regulate cell surface trafficking and neurotrophic signaling in SORL1-depleted neurons. CONCLUSION: Collectively, and together with other recent observations, these findings suggest that one role for SORL1 is to contribute to endosomal degradation and recycling pathways in neurons, a conclusion that has both pathogenic and therapeutic implications for Alzheimer's disease.


Asunto(s)
Enfermedad de Alzheimer , Precursor de Proteína beta-Amiloide , Proteínas Relacionadas con Receptor de LDL , Glicoproteínas de Membrana , Proteínas de Transporte de Membrana , Neuronas , Receptor trkB , Humanos , Enfermedad de Alzheimer/metabolismo , Enfermedad de Alzheimer/fisiopatología , Precursor de Proteína beta-Amiloide/metabolismo , Endosomas/metabolismo , Células Madre Pluripotentes Inducidas , Proteínas Relacionadas con Receptor de LDL/metabolismo , Glicoproteínas de Membrana/metabolismo , Proteínas de Transporte de Membrana/metabolismo , Neuronas/metabolismo , Neuronas/fisiología , Receptor trkB/metabolismo
13.
Cell Rep ; 37(13): 110182, 2021 12 28.
Artículo en Inglés | MEDLINE | ID: mdl-34965419

RESUMEN

Whether and how the pathogenic disruptions in endosomal trafficking observed in Alzheimer's disease (AD) are linked to its anatomical vulnerability remain unknown. Here, we began addressing these questions by showing that neurons are enriched with a second retromer core, organized around VPS26b, differentially dedicated to endosomal recycling. Next, by imaging mouse models, we show that the trans-entorhinal cortex, a region most vulnerable to AD, is most susceptible to VPS26b depletion-a finding validated by electrophysiology, immunocytochemistry, and behavior. VPS26b was then found enriched in the trans-entorhinal cortex of human brains, where both VPS26b and the retromer-related receptor SORL1 were found deficient in AD. Finally, by regulating glutamate receptor and SORL1 recycling, we show that VPS26b can mediate regionally selective synaptic dysfunction and SORL1 deficiency. Together with the trans-entorhinal's unique network properties, hypothesized to impose a heavy demand on endosomal recycling, these results suggest a general mechanism that can explain AD's regional vulnerability.


Asunto(s)
Enfermedad de Alzheimer/patología , Encéfalo/patología , Endosomas/patología , Proteínas Relacionadas con Receptor de LDL/metabolismo , Proteínas de Transporte de Membrana/metabolismo , Proteínas de Transporte Vesicular/metabolismo , Proteínas de Transporte Vesicular/fisiología , Adulto , Anciano , Anciano de 80 o más Años , Enfermedad de Alzheimer/genética , Enfermedad de Alzheimer/metabolismo , Animales , Encéfalo/metabolismo , Estudios de Casos y Controles , Endosomas/metabolismo , Femenino , Humanos , Proteínas Relacionadas con Receptor de LDL/genética , Masculino , Proteínas de Transporte de Membrana/genética , Ratones , Ratones Endogámicos C57BL , Ratones Noqueados , Persona de Mediana Edad , Neuroimagen , Transporte de Proteínas , Proteínas de Transporte Vesicular/química , Proteínas de Transporte Vesicular/genética
14.
Acta Neuropathol Commun ; 9(1): 43, 2021 03 16.
Artículo en Inglés | MEDLINE | ID: mdl-33726851

RESUMEN

SORL1 is strongly associated with both sporadic and familial forms of Alzheimer's disease (AD), but a lack of information about alternatively spliced transcripts currently limits our understanding of the role of SORL1 in AD. Here, we describe a SORL1 transcript (SORL1-38b) characterized by inclusion of a novel exon (E38b) that encodes a truncated protein. We identified E38b-containing transcripts in several brain regions, with the highest expression in the cerebellum and showed that SORL1-38b is largely located in neuronal dendrites, which is in contrast to the somatic distribution of transcripts encoding the full-length SORLA protein (SORL1-fl). SORL1-38b transcript levels were significantly reduced in AD cerebellum in three independent cohorts of postmortem brains, whereas no changes were observed for SORL1-fl. A trend of lower 38b transcript level in cerebellum was found for individuals carrying the risk variant at rs2282649 (known as SNP24), although not reaching statistical significance. These findings suggest synaptic functions for SORL1-38b in the brain, uncovering novel aspects of SORL1 that can be further explored in AD research.


Asunto(s)
Empalme Alternativo , Enfermedad de Alzheimer/genética , Enfermedad de Alzheimer/metabolismo , Dendritas/metabolismo , Proteínas Relacionadas con Receptor de LDL/genética , Proteínas Relacionadas con Receptor de LDL/metabolismo , Proteínas de Transporte de Membrana/genética , Proteínas de Transporte de Membrana/metabolismo , Empalme Alternativo/genética , Autopsia , Encéfalo/metabolismo , Cerebelo/patología , Estudios de Cohortes , Dendritas/genética , Femenino , Predisposición Genética a la Enfermedad , Células HEK293 , Humanos , Proteínas Relacionadas con Receptor de LDL/análisis , Masculino , Proteínas de Transporte de Membrana/análisis , Neuronas/metabolismo , Bancos de Tejidos
15.
Oncogene ; 40(7): 1300-1317, 2021 02.
Artículo en Inglés | MEDLINE | ID: mdl-33420373

RESUMEN

Current evidence indicates that resistance to the tyrosine kinase-type cell surface receptor (HER2)-targeted therapies is frequently associated with HER3 and active signaling via HER2-HER3 dimers, particularly in the context of breast cancer. Thus, understanding the response to HER2-HER3 signaling and the regulation of the dimer is essential to decipher therapy relapse mechanisms. Here, we investigate a bidirectional relationship between HER2-HER3 signaling and a type-1 transmembrane sorting receptor, sortilin-related receptor (SorLA; SORL1). We demonstrate that heregulin-mediated signaling supports SorLA transcription downstream of the mitogen-activated protein kinase pathway. In addition, we demonstrate that SorLA interacts directly with HER3, forming a trimeric complex with HER2 and HER3 to attenuate lysosomal degradation of the dimer in a Ras-related protein Rab4-dependent manner. In line with a role for SorLA in supporting the stability of the HER2 and HER3 receptors, loss of SorLA compromised heregulin-induced cell proliferation and sensitized metastatic anti-HER2 therapy-resistant breast cancer cells to neratinib in cancer spheroids in vitro and in vivo in a zebrafish brain xenograft model.


Asunto(s)
Neoplasias de la Mama/genética , Proteínas Relacionadas con Receptor de LDL/genética , Proteínas de Transporte de Membrana/genética , Receptor ErbB-2/genética , Receptor ErbB-3/genética , Animales , Encéfalo/efectos de los fármacos , Encéfalo/metabolismo , Neoplasias de la Mama/patología , Proliferación Celular/efectos de los fármacos , Resistencia a Antineoplásicos/efectos de los fármacos , Resistencia a Antineoplásicos/genética , Femenino , Xenoinjertos , Humanos , Ratones , Neurregulina-1/farmacología , Esferoides Celulares/efectos de los fármacos , Esferoides Celulares/metabolismo , Pez Cebra , Proteínas de Unión al GTP rab4/genética
16.
Mol Neurobiol ; 57(7): 3106-3117, 2020 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-32472518

RESUMEN

Sorting protein-related receptor containing LDLR class A repeats (SORLA; also known as LR11) exerts intraneuronal trafficking functions in the central nervous system. Recently, involvement of SORLA in retinogenesis was proposed, but no studies have examined yet in detail the expression pattern of this sorting receptor in the retina. Here, we provide a spatio-temporal characterization of SORL1 mRNA and its translational product SORLA in the postnatal mouse retina. Using stereological analysis, we confirmed previous studies showing that receptor depletion in knockout mice significantly reduces the number of cells in the inner nuclear layer (INL), suggesting that functional SORLA expression is essential for the development of this retinal strata. qPCR and Western blot analyses showed that SORL1/SORLA expression peaks at postnatal day 15, just after eye opening. Interestingly, we found that transcripts are somatically located in several neuronal populations residing in the INL and the ganglion cell layer, whereas SORLA protein is also present in the synaptic plexiform layers. In line with receptor expression in dendritic terminals, we found delayed stratification of the inner plexiform layer in knockout mice, indicating an involvement of SORLA in neuronal connectivity. Altogether, these data suggest a novel role of SORLA in synaptogenesis. Receptor dysfunctions may be implicated in morphological and functional impairments of retinal inner layer formation associated with eye disorders.


Asunto(s)
Regulación del Desarrollo de la Expresión Génica , Proteínas de Transporte de Membrana/metabolismo , Neuronas/metabolismo , Receptores de LDL/metabolismo , Retina/metabolismo , Animales , Proteínas de Transporte de Membrana/genética , Ratones , Ratones Noqueados , Receptores de LDL/genética
17.
Sci Adv ; 5(6): eaav9946, 2019 06.
Artículo en Inglés | MEDLINE | ID: mdl-31223654

RESUMEN

Neuropathic pain is a major incurable clinical problem resulting from peripheral nerve trauma or disease. A central mechanism is the reduced expression of the potassium chloride cotransporter 2 (KCC2) in dorsal horn neurons induced by brain-derived neurotrophic factor (BDNF), causing neuronal disinhibition within spinal nociceptive pathways. Here, we demonstrate how neurotensin receptor 2 (NTSR2) signaling impairs BDNF-induced spinal KCC2 down-regulation, showing how these two pathways converge to control the abnormal sensory response following peripheral nerve injury. We establish how sortilin regulates this convergence by scavenging neurotensin from binding to NTSR2, thus modulating its inhibitory effect on BDNF-mediated mechanical allodynia. Using sortilin-deficient mice or receptor inhibition by antibodies or a small-molecule antagonist, we lastly demonstrate that we are able to fully block BDNF-induced pain and alleviate injury-induced neuropathic pain, validating sortilin as a clinically relevant target.


Asunto(s)
Proteínas Adaptadoras del Transporte Vesicular/metabolismo , Factor Neurotrófico Derivado del Encéfalo/metabolismo , Neuralgia/metabolismo , Neurotensina/metabolismo , Animales , Regulación hacia Abajo/fisiología , Femenino , Humanos , Hiperalgesia/metabolismo , Masculino , Ratones , Ratones Endogámicos C57BL , Traumatismos de los Nervios Periféricos/metabolismo , Receptores de Neurotensina/metabolismo , Transducción de Señal/fisiología
18.
Front Cell Neurosci ; 13: 235, 2019.
Artículo en Inglés | MEDLINE | ID: mdl-31191256

RESUMEN

Schwann cell reprogramming and differentiation are crucial prerequisites for neuronal regeneration and re-myelination to occur following injury to peripheral nerves. The neurotrophin receptor p75NTR has been identified as a positive modulator for Schwann cell myelination during development and implicated in promoting nerve regeneration after injury. However, most studies base this conclusion on results obtained from complete p75NTR knockout mouse models and cannot dissect the specific role of p75NTR expressed by Schwann cells. In this present study, a conditional knockout model selectively deleting p75NTR expression in Schwann cells was generated, where p75NTR expression is replaced with that of an mCherry reporter. Silencing of Schwann cell p75NTR expression was confirmed in the sciatic nerve in vivo and in vitro, without altering axonal expression of p75NTR. No difference in sciatic nerve myelination during development or following sciatic nerve crush injury was observed, as determined by quantification of both myelinated and unmyelinated nerve fiber densities, myelinated axonal diameter and myelin thickness. However, the absence of Schwann cell p75NTR reduced motor nerve conduction velocity after crush injury. Our data indicate that the absence of Schwann cell p75NTR expression in vivo is not critical for axonal regrowth or remyelination following sciatic nerve crush injury, but does play a key role in functional recovery. Overall, this represents the first step in redefining the role of p75NTR in the peripheral nervous system, suggesting that the Schwann cell-axon unit functions as a syncytium, with the previous published involvement of p75NTR in remyelination most likely depending on axonal/neuronal p75NTR and/or mutual glial-axonal interactions.

19.
Nat Commun ; 10(1): 2340, 2019 05 28.
Artículo en Inglés | MEDLINE | ID: mdl-31138794

RESUMEN

The human epidermal growth factor receptor 2 (HER2) is an oncogene targeted by several kinase inhibitors and therapeutic antibodies. While the endosomal trafficking of many other receptor tyrosine kinases is known to regulate their oncogenic signalling, the prevailing view on HER2 is that this receptor is predominantly retained on the cell surface. Here, we find that sortilin-related receptor 1 (SORLA; SORL1) co-precipitates with HER2 in cancer cells and regulates HER2 subcellular distribution by promoting recycling of the endosomal receptor back to the plasma membrane. SORLA protein levels in cancer cell lines and bladder cancers correlates with HER2 levels. Depletion of SORLA triggers HER2 targeting to late endosomal/lysosomal compartments and impairs HER2-driven signalling and in vivo tumour growth. SORLA silencing also disrupts normal lysosome function and sensitizes anti-HER2 therapy sensitive and resistant cancer cells to lysosome-targeting cationic amphiphilic drugs. These findings reveal potentially important SORLA-dependent endosomal trafficking-linked vulnerabilities in HER2-driven cancers.


Asunto(s)
Neoplasias de la Mama/genética , Carcinoma Intraductal no Infiltrante/genética , Carcinoma de Células Transicionales/genética , Membrana Celular/metabolismo , Endosomas/metabolismo , Proteínas Relacionadas con Receptor de LDL/genética , Proteínas de Transporte de Membrana/genética , Receptor ErbB-2/metabolismo , Neoplasias de la Vejiga Urinaria/genética , Animales , Neoplasias de la Mama/metabolismo , Carcinoma Intraductal no Infiltrante/metabolismo , Carcinoma de Células Transicionales/metabolismo , Línea Celular Tumoral , Proliferación Celular , Femenino , Humanos , Proteínas Relacionadas con Receptor de LDL/metabolismo , Lisosomas/metabolismo , Células MCF-7 , Proteínas de Transporte de Membrana/metabolismo , Ratones , Ratones Desnudos , Trasplante de Neoplasias , Transporte de Proteínas , Neoplasias de la Vejiga Urinaria/metabolismo
20.
Neurobiol Aging ; 71: 266.e11-266.e24, 2018 11.
Artículo en Inglés | MEDLINE | ID: mdl-30078640

RESUMEN

SORL1 encodes a 250-kDa protein named sorLA, a functional sorting receptor for the amyloid precursor protein (APP). Several single nucleotide polymorphisms of the gene SORL1, encoding sorLA, are genetically associated with Alzheimer's disease (AD). In the existing literature, SORL1 is insufficiently described at the transcriptional level, and there is very limited amount of functional data defining different transcripts. We have characterized a SORL1 transcript containing a novel exon 30B. The transcript is expressed in most brain regions with highest expression in the temporal lobe and hippocampus. Exon 30B is spliced to exon 31, leading to a mature transcript that encodes an 829 amino acid sorLA receptor. This receptor variant lacks the binding site for APP and is unlikely to function in APP sorting. This transcript is expressed in equal amounts in the cerebellum from AD and non-AD individuals. Our data describe a transcript that encodes a truncated sorLA receptor, suggesting novel neuronal functions for sorLA and that alternative transcription provides a mechanism for SORL1 activity regulation.


Asunto(s)
Enfermedad de Alzheimer/genética , Encéfalo/metabolismo , Proteínas Relacionadas con Receptor de LDL/genética , Proteínas de Transporte de Membrana/genética , Anciano , Enfermedad de Alzheimer/metabolismo , Línea Celular , Exones , Femenino , Predisposición Genética a la Enfermedad , Humanos , Proteínas Relacionadas con Receptor de LDL/metabolismo , Masculino , Proteínas de Transporte de Membrana/metabolismo , Neuronas/metabolismo , Polimorfismo de Nucleótido Simple , Factores de Riesgo , Análisis de Secuencia de ADN
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...