Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 9 de 9
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Nat Commun ; 15(1): 2442, 2024 Mar 18.
Artículo en Inglés | MEDLINE | ID: mdl-38499541

RESUMEN

A foundational assumption of quantum error correction theory is that quantum gates can be scaled to large processors without exceeding the error-threshold for fault tolerance. Two major challenges that could become fundamental roadblocks are manufacturing high-performance quantum hardware and engineering a control system that can reach its performance limits. The control challenge of scaling quantum gates from small to large processors without degrading performance often maps to non-convex, high-constraint, and time-dynamic control optimization over an exponentially expanding configuration space. Here we report on a control optimization strategy that can scalably overcome the complexity of such problems. We demonstrate it by choreographing the frequency trajectories of 68 frequency-tunable superconducting qubits to execute single- and two-qubit gates while mitigating computational errors. When combined with a comprehensive model of physical errors across our processor, the strategy suppresses physical error rates by ~3.7× compared with the case of no optimization. Furthermore, it is projected to achieve a similar performance advantage on a distance-23 surface code logical qubit with 1057 physical qubits. Our control optimization strategy solves a generic scaling challenge in a way that can be adapted to a variety of quantum operations, algorithms, and computing architectures.

2.
Nat Commun ; 13(1): 3431, 2022 Jun 14.
Artículo en Inglés | MEDLINE | ID: mdl-35701395

RESUMEN

Techniques to mold the flow of light on subwavelength scales enable fundamentally new optical systems and device applications. The realization of programmable, active optical systems with fast, tunable components is among the outstanding challenges in the field. Here, we experimentally demonstrate a few-pixel beam steering device based on electrostatic gate control of excitons in an atomically thin semiconductor with strong light-matter interactions. By combining the high reflectivity of a MoSe2 monolayer with a graphene split-gate geometry, we shape the wavefront phase profile to achieve continuously tunable beam deflection with a range of 10°, two-dimensional beam steering, and switching times down to 1.6 nanoseconds. Our approach opens the door for a new class of atomically thin optical systems, such as rapidly switchable beam arrays and quantum metasurfaces operating at their fundamental thickness limit.

3.
Nat Mater ; 20(4): 480-487, 2021 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-33398121

RESUMEN

Moiré superlattices in twisted van der Waals materials have recently emerged as a promising platform for engineering electronic and optical properties. A major obstacle to fully understanding these systems and harnessing their potential is the limited ability to correlate direct imaging of the moiré structure with optical and electronic properties. Here we develop a secondary electron microscope technique to directly image stacking domains in fully functional van der Waals heterostructure devices. After demonstrating the imaging of AB/BA and ABA/ABC domains in multilayer graphene, we employ this technique to investigate reconstructed moiré patterns in twisted WSe2/WSe2 bilayers and directly correlate the increasing moiré periodicity with the emergence of two distinct exciton species in photoluminescence measurements. These states can be tuned individually through electrostatic gating and feature different valley coherence properties. We attribute our observations to the formation of an array of two intralayer exciton species that reside in alternating locations in the superlattice, and open up new avenues to realize tunable exciton arrays in twisted van der Waals heterostructures, with applications in quantum optoelectronics and explorations of novel many-body systems.

4.
Nat Nanotechnol ; 15(9): 750-754, 2020 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-32661373

RESUMEN

Van der Waals heterostructures obtained via stacking and twisting have been used to create moiré superlattices1, enabling new optical and electronic properties in solid-state systems. Moiré lattices in twisted bilayers of transition metal dichalcogenides (TMDs) result in exciton trapping2-5, host Mott insulating and superconducting states6 and act as unique Hubbard systems7-9 whose correlated electronic states can be detected and manipulated optically. Structurally, these twisted heterostructures feature atomic reconstruction and domain formation10-14. However, due to the nanoscale size of moiré domains, the effects of atomic reconstruction on the electronic and excitonic properties have not been systematically investigated. Here we use near-0°-twist-angle MoSe2/MoSe2 bilayers with large rhombohedral AB/BA domains15 to directly probe the excitonic properties of individual domains with far-field optics. We show that this system features broken mirror/inversion symmetry, with the AB and BA domains supporting interlayer excitons with out-of-plane electric dipole moments in opposite directions. The dipole orientation of ground-state Γ-K interlayer excitons can be flipped with electric fields, while higher-energy K-K interlayer excitons undergo field-asymmetric hybridization with intralayer K-K excitons. Our study reveals the impact of crystal symmetry on TMD excitons and points to new avenues for realizing topologically non-trivial systems16,17, exotic metasurfaces18, collective excitonic phases19 and quantum emitter arrays20,21 via domain-pattern engineering.

5.
Phys Rev Lett ; 124(21): 217403, 2020 May 29.
Artículo en Inglés | MEDLINE | ID: mdl-32530686

RESUMEN

The twist degree of freedom provides a powerful new tool for engineering the electrical and optical properties of van der Waals heterostructures. Here, we show that the twist angle can be used to control the spin-valley properties of transition metal dichalcogenide bilayers by changing the momentum alignment of the valleys in the two layers. Specifically, we observe that the interlayer excitons in twisted WSe_{2}/WSe_{2} bilayers exhibit a high (>60%) degree of circular polarization (DOCP) and long valley lifetimes (>40 ns) at zero electric and magnetic fields. The valley lifetime can be tuned by more than 3 orders of magnitude via electrostatic doping, enabling switching of the DOCP from ∼80% in the n-doped regime to <5% in the p-doped regime. These results open up new avenues for tunable chiral light-matter interactions, enabling novel device schemes that exploit the valley degree of freedom.

6.
Phys Rev Lett ; 122(16): 166802, 2019 Apr 26.
Artículo en Inglés | MEDLINE | ID: mdl-31075009

RESUMEN

The thermoelectric (TE) properties of a material are dramatically altered when electron-electron interactions become the dominant scattering mechanism. In the degenerate hydrodynamic regime, the thermal conductivity is reduced and becomes a decreasing function of the electronic temperature, due to a violation of the Wiedemann-Franz law. We here show how this peculiar temperature dependence gives rise to new striking TE phenomena. These include an 80-fold increase in TE efficiency compared to the Wiedemann-Franz regime, dramatic qualitative changes in the steady state temperature profile, and an anomalously large Thomson effect. In graphene, which we pay special attention to here, these effects are further amplified due to a doubling of the thermopower.

7.
Science ; 364(6436): 154-157, 2019 04 12.
Artículo en Inglés | MEDLINE | ID: mdl-30975884

RESUMEN

Understanding and controlling nonequilibrium electronic phenomena is an outstanding challenge in science and engineering. By electrically driving ultraclean graphene devices out of equilibrium, we observe an instability that is manifested as substantially enhanced current fluctuations and suppressed conductivity at microwave frequencies. Spatial mapping of the nonequilibrium current fluctuations using nanoscale magnetic field sensors reveals that the fluctuations grow exponentially along the direction of carrier flow. Our observations, including the dependence on density and temperature, are consistently explained by the emergence of an electron-phonon Cerenkov instability at supersonic drift velocities. These results offer the opportunity for tunable terahertz generation and active phononic devices based on two-dimensional materials.

8.
Nano Lett ; 17(9): 5285-5290, 2017 09 13.
Artículo en Inglés | MEDLINE | ID: mdl-28805397

RESUMEN

We investigated phonon-polaritons in hexagonal boron nitride-a naturally hyperbolic van der Waals material-by means of the scattering-type scanning near-field optical microscopy. Real-space nanoimages we have obtained detail how the polaritons are launched when the light incident on a thin hexagonal boron nitride slab is scattered by various intrinsic and extrinsic inhomogeneities, including sample edges, metallic nanodisks deposited on its top surface, random defects, and surface impurities. The scanned tip of the near-field microscope is itself a polariton launcher whose efficiency proves to be superior to all the other types of polariton launchers we studied. Our work may inform future development of polaritonic nanodevices as well as fundamental studies of collective modes in van der Waals materials.

9.
Phys Rev Lett ; 112(24): 247401, 2014 Jun 20.
Artículo en Inglés | MEDLINE | ID: mdl-24996107

RESUMEN

We report on temperature-dependent photocurrent measurements of high-quality dual-gated monolayer graphene p-n junction devices. A photothermoelectric effect governs the photocurrent response in our devices, allowing us to track the hot-electron temperature and probe hot-electron cooling channels over a wide temperature range (4 to 300 K). At high temperatures (T > T(*)), we found that both the peak photocurrent and the hot spot size decreased with temperature, while at low temperatures (T < T(*)), we found the opposite, namely that the peak photocurrent and the hot spot size increased with temperature. This nonmonotonic temperature dependence can be understood as resulting from the competition between two hot-electron cooling pathways: (a) (intrinsic) momentum-conserving normal collisions that dominates at low temperatures and (b) (extrinsic) disorder-assisted supercollisions that dominates at high temperatures. Gate control in our high-quality samples allows us to resolve the two processes in the same device for the first time. The peak temperature T(*) depends on carrier density and disorder concentration, thus allowing for an unprecedented way of controlling graphene's photoresponse.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...