Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Sci Total Environ ; 912: 168670, 2024 Feb 20.
Artículo en Inglés | MEDLINE | ID: mdl-37996032

RESUMEN

The photochemical degradation of chromophoric dissolved organic matter (CDOM) upon solar exposure, known as photobleaching, can significantly alter the optical properties of the surface ocean. By leading to the breakdown of UV- and visible-radiation-absorbing moieties within dissolved organic matter, photobleaching regulates solar heating, the vertical distribution of photochemical processes, and UV exposure and light availability to the biota in surface waters. Despite its biogeochemical and ecological relevance, this sink of CDOM remains poorly quantified. Efforts to quantify photobleaching globally have long been hampered by the inherent challenge of determining representative apparent quantum yields (AQYs) for this process, and by the resulting lack of understanding of their variability in natural waters. Measuring photobleaching AQY is made challenging by the need to determine AQY matrices (AQY-M) that capture the dual spectral dependency of this process (i.e., magnitude varies with both excitation wavelength and response wavelength). A new experimental approach now greatly facilitates the quantification of AQY-M for natural waters, and can help address this problem. Here, we conducted controlled photochemical experiments and applied this new approach to determine the AQY-M of 27 contrasting water samples collected globally along the land-ocean aquatic continuum (i.e., rivers, estuaries, coastal ocean, and open ocean). The experiments and analyses revealed considerable variability in the magnitude and spectral characteristics of the AQY-M among samples, with strong dependencies on CDOM composition/origin (as indicated by the CDOM 275-295-nm spectral slope coefficient, S275-295), solar exposure duration, and water temperature. The experimental data facilitated the development and validation of a statistical model capable of accurately predicting the AQY-M from three simple predictor variables: 1) S275-295, 2) water temperature, and 3) a standardized measure of solar exposure. The model will help constrain the variability of the AQY-M when modeling photobleaching rates on regional and global scales.

2.
Nat Commun ; 12(1): 1297, 2021 02 26.
Artículo en Inglés | MEDLINE | ID: mdl-33637712

RESUMEN

Water radiolysis continuously produces H2 and oxidized chemicals in wet sediment and rock. Radiolytic H2 has been identified as the primary electron donor (food) for microorganisms in continental aquifers kilometers below Earth's surface. Radiolytic products may also be significant for sustaining life in subseafloor sediment and subsurface environments of other planets. However, the extent to which most subsurface ecosystems rely on radiolytic products has been poorly constrained, due to incomplete understanding of radiolytic chemical yields in natural environments. Here we show that all common marine sediment types catalyse radiolytic H2 production, amplifying yields by up to 27X relative to pure water. In electron equivalents, the global rate of radiolytic H2 production in marine sediment appears to be 1-2% of the global organic flux to the seafloor. However, most organic matter is consumed at or near the seafloor, whereas radiolytic H2 is produced at all sediment depths. Comparison of radiolytic H2 consumption rates to organic oxidation rates suggests that water radiolysis is the principal source of biologically accessible energy for microbial communities in marine sediment older than a few million years. Where water permeates similarly catalytic material on other worlds, life may also be sustained by water radiolysis.

3.
Appl Spectrosc ; 71(4): 600-626, 2017 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-28374610

RESUMEN

Obtaining quantitative chemical information using laser-induced breakdown spectroscopy is challenging due to the variability in the bulk composition of geological materials. Chemical matrix effects caused by this variability produce changes in the peak area that are not proportional to the changes in minor element concentration. Therefore the use of univariate calibrations to predict trace element concentrations in geological samples is plagued by a high degree of uncertainty. This work evaluated the accuracy of univariate minor element predictions as a function of the composition of the major element matrices of the samples and examined the factors that limit the prediction accuracy of univariate calibrations. Five different sample matrices were doped with 10-85 000 ppm Cr, Mn, Ni, Zn, and Co and then independently measured in 175 mixtures by X-ray fluorescence, inductively coupled plasma atomic emission spectrometry, and laser-induced breakdown spectroscopy, the latter at three different laser energies (1.9, 2.8, and 3.7 mJ). Univariate prediction models for minor element concentrations were created using varying combinations of dopants, matrices, normalization/no normalization, and energy density; the model accuracies were evaluated using root mean square prediction errors and leave-one-out cross-validation. The results showed the superiority of using normalization for predictions of minor elements when the predicted sample and those in the training set had matrices with similar SiO2 contents. Normalization also mitigates differences in spectra arising from laser/sample coupling effects and the use of different energy densities. Prediction of minor elements in matrices that are dissimilar to those in the training set can increase the uncertainty of prediction by an order of magnitude. Overall, the quality of a univariate calibration is primarily determined by the availability of a persistent, measurable peak with a favorable transition probability that has little to no interference from neighboring peaks in the spectra of both the unknown and those used to train it.

4.
Front Microbiol ; 7: 8, 2016.
Artículo en Inglés | MEDLINE | ID: mdl-26858697

RESUMEN

Subsurface microbial communities undertake many terminal electron-accepting processes, often simultaneously. Using a tritium-based assay, we measured the potential hydrogen oxidation catalyzed by hydrogenase enzymes in several subsurface sedimentary environments (Lake Van, Barents Sea, Equatorial Pacific, and Gulf of Mexico) with different predominant electron-acceptors. Hydrogenases constitute a diverse family of enzymes expressed by microorganisms that utilize molecular hydrogen as a metabolic substrate, product, or intermediate. The assay reveals the potential for utilizing molecular hydrogen and allows qualitative detection of microbial activity irrespective of the predominant electron-accepting process. Because the method only requires samples frozen immediately after recovery, the assay can be used for identifying microbial activity in subsurface ecosystems without the need to preserve live material. We measured potential hydrogen oxidation rates in all samples from multiple depths at several sites that collectively span a wide range of environmental conditions and biogeochemical zones. Potential activity normalized to total cell abundance ranges over five orders of magnitude and varies, dependent upon the predominant terminal electron acceptor. Lowest per-cell potential rates characterize the zone of nitrate reduction and highest per-cell potential rates occur in the methanogenic zone. Possible reasons for this relationship to predominant electron acceptor include (i) increasing importance of fermentation in successively deeper biogeochemical zones and (ii) adaptation of H2ases to successively higher concentrations of H2 in successively deeper zones.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...