Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 6 de 6
Filtrar
Más filtros











Base de datos
Intervalo de año de publicación
1.
Mol Psychiatry ; 27(10): 4264-4273, 2022 10.
Artículo en Inglés | MEDLINE | ID: mdl-35764706

RESUMEN

Hypoxic-ischemic injury has been linked with increased risk for developing Alzheimer's disease (AD). The underlying mechanism of this association is poorly understood. Here, we report distinct roles for hypoxia-inducible factor-1α (Hif-1α) in the regulation of BACE1 and γ-secretase activity, two proteases involved in the production of amyloid-beta (Aß). We have demonstrated that Hif-1α upregulates both BACE1 and γ-secretase activity for Aß production in brain hypoxia-induced either by cerebral hypoperfusion or breathing 10% O2. Hif-1α binds to γ-secretase, which elevates the amount of active γ-secretase complex without affecting the level of individual subunits in hypoxic-ischemic mouse brains. Additionally, the expression of full length Hif-1α increases BACE1 and γ-secretase activity in primary neuronal culture, whereas a transcriptionally incompetent Hif-1α variant only activates γ-secretase. These findings indicate that Hif-1α transcriptionally upregulates BACE1 and nontranscriptionally activates γ-secretase for Aß production in hypoxic-ischemic conditions. Consequently, Hif-1α-mediated Aß production may be an adaptive response to hypoxic-ischemic injury, subsequently leading to increased risk for AD. Preventing the interaction of Hif-1α with γ-secretase may therefore be a promising therapeutic strategy for AD treatment.


Asunto(s)
Enfermedad de Alzheimer , Secretasas de la Proteína Precursora del Amiloide , Subunidad alfa del Factor 1 Inducible por Hipoxia , Animales , Ratones , Enfermedad de Alzheimer/metabolismo , Péptidos beta-Amiloides/metabolismo , Secretasas de la Proteína Precursora del Amiloide/metabolismo , Ácido Aspártico Endopeptidasas/metabolismo , Hipoxia/complicaciones , Subunidad alfa del Factor 1 Inducible por Hipoxia/metabolismo
2.
Cell Rep ; 38(10): 110475, 2022 03 08.
Artículo en Inglés | MEDLINE | ID: mdl-35263592

RESUMEN

Mitochondrial cardiomyopathies are fatal diseases, with no effective treatment. Alterations of heart mitochondrial function activate the mitochondrial integrated stress response (ISRmt), a transcriptional program affecting cell metabolism, mitochondrial biogenesis, and proteostasis. In humans, mutations in CHCHD10, a mitochondrial protein with unknown function, were recently associated with dominant multi-system mitochondrial diseases, whose pathogenic mechanisms remain to be elucidated. Here, in CHCHD10 knockin mutant mice, we identify an extensive cardiac metabolic rewiring triggered by proteotoxic ISRmt. The stress response arises early on, before the onset of bioenergetic impairments, triggering a switch from oxidative to glycolytic metabolism, enhancement of transsulfuration and one carbon (1C) metabolism, and widespread metabolic imbalance. In parallel, increased NADPH oxidases elicit antioxidant responses, leading to heme depletion. As the disease progresses, the adaptive metabolic stress response fails, resulting in fatal cardiomyopathy. Our findings suggest that early interventions to counteract metabolic imbalance could ameliorate mitochondrial cardiomyopathy associated with proteotoxic ISRmt.


Asunto(s)
Cardiomiopatías , Enfermedades Mitocondriales , Animales , Cardiomiopatías/patología , Modelos Animales de Enfermedad , Ratones , Mitocondrias/metabolismo , Enfermedades Mitocondriales/metabolismo , Proteínas Mitocondriales/genética , Proteínas Mitocondriales/metabolismo
3.
Cell Death Differ ; 27(6): 1896-1906, 2020 06.
Artículo en Inglés | MEDLINE | ID: mdl-31819158

RESUMEN

The GTPase OPA1 and the AAA-protease OMA1 serve well-established roles in mitochondrial stress responses and mitochondria-initiated cell death. In addition to its role in mitochondrial membrane fusion, cristae structure, and bioenergetic function, OPA1 controls apoptosis by sequestering cytochrome c (cyt c) in mitochondrial cristae. Cleavage of functional long OPA1 (L-OPA1) isoforms by OMA1 inactivates mitochondrial fusion and primes apoptosis. OPA1 cleavage is regulated by the prohibitin (PHB) complex, a heteromeric, ring-shaped mitochondrial inner membrane scaffolding complex composed of PHB1 and PHB2. In neurons, PHB plays a protective role against various stresses, and PHB deletion destabilizes OPA1 causing neurodegeneration. While deletion of OMA1 prevents OPA1 destabilization and attenuates neurodegeneration in PHB2 KO mice, how PHB levels regulate OMA1 is still unknown. Here, we investigate the effects of modulating neuronal PHB levels on OMA1 stability and OPA1 cleavage. We demonstrate that PHB promotes OMA1 turnover, effectively decreasing the pool of OMA1. Further, we show that OMA1 binds to cardiolipin (CL), a major mitochondrial phospholipid. CL binding promotes OMA1 turnover, as we show that deleting the CL-binding domain of OMA1 decreases its turnover rate. Since PHB is known to stabilize CL, these data suggest that PHB modulates OMA1 through CL. Furthermore, we show that PHB decreases cyt c release induced by tBID and attenuates caspase 9 activation in response to hypoxic stress in neurons. Taken together, our results suggest that PHB-mediated CL stabilization regulates stress responses and cell death through OMA1 turnover and cyt c release.


Asunto(s)
GTP Fosfohidrolasas/metabolismo , Metaloproteasas/metabolismo , Proteínas Mitocondriales/metabolismo , Neuronas , Proteínas Represoras/fisiología , Animales , Apoptosis , Ratones , Ratones Noqueados , Neuronas/citología , Neuronas/metabolismo , Células PC12 , Prohibitinas , Ratas
4.
Acta Neuropathol ; 138(1): 103-121, 2019 07.
Artículo en Inglés | MEDLINE | ID: mdl-30877432

RESUMEN

Mutations in coiled-coil-helix-coiled-coil-helix domain containing 10 (CHCHD10), a mitochondrial protein of unknown function, cause a disease spectrum with clinical features of motor neuron disease, dementia, myopathy and cardiomyopathy. To investigate the pathogenic mechanisms of CHCHD10, we generated mutant knock-in mice harboring the mouse-equivalent of a disease-associated human S59L mutation, S55L in the endogenous mouse gene. CHCHD10S55L mice develop progressive motor deficits, myopathy, cardiomyopathy and accelerated mortality. Critically, CHCHD10 accumulates in aggregates with its paralog CHCHD2 specifically in affected tissues of CHCHD10S55L mice, leading to aberrant organelle morphology and function. Aggregates induce a potent mitochondrial integrated stress response (mtISR) through mTORC1 activation, with elevation of stress-induced transcription factors, secretion of myokines, upregulated serine and one-carbon metabolism, and downregulation of respiratory chain enzymes. Conversely, CHCHD10 ablation does not induce disease pathology or activate the mtISR, indicating that CHCHD10S55L-dependent disease pathology is not caused by loss-of-function. Overall, CHCHD10S55L mice recapitulate crucial aspects of human disease and reveal a novel toxic gain-of-function mechanism through maladaptive mtISR and metabolic dysregulation.


Asunto(s)
Demencia Frontotemporal/genética , Demencia Frontotemporal/patología , Mutación con Ganancia de Función/genética , Mitocondrias/genética , Animales , Estudios de Asociación Genética , Ratones Transgénicos , Mitocondrias/patología , Membranas Mitocondriales/metabolismo , Mutación/genética , Enfermedad de Parkinson/genética
5.
J Neurochem ; 146(3): 235-250, 2018 08.
Artículo en Inglés | MEDLINE | ID: mdl-29808474

RESUMEN

Prohibitin (PHB) is a ubiquitously expressed and evolutionarily conserved mitochondrial protein with multiple functions. We have recently shown that PHB up-regulation offers robust protection against neuronal injury in models of cerebral ischemia in vitro and in vivo, but the mechanism by which PHB affords neuroprotection remains to be elucidated. Here, we manipulated PHB expression in PC12 neural cells to investigate its impact on mitochondrial function and the mechanisms whereby it protects cells exposed to oxidative stress. PHB over-expression promoted cell survival, whereas PHB down-regulation diminished cell viability. Functionally, manipulation of PHB levels did not affect basal mitochondrial respiration, but it increased spare respiratory capacity. Moreover, PHB over-expression preserved mitochondrial respiratory function of cells exposed to oxidative stress. Preserved respiratory capacity in differentiated PHB over-expressing cells exposed to oxidative stress was associated with an elongated mitochondrial morphology, whereas PHB down-regulation enhanced fragmentation. Mitochondrial complex I oxidative degradation was attenuated by PHB over-expression and increased in PHB knockdown cells. Changes in complex I degradation were associated with alterations of respiratory chain supercomplexes. Furthermore, we showed that PHB directly interacts with cardiolipin and that down-regulation of PHB results in loss of cardiolipin in mitochondria, which may contribute to destabilizing respiratory chain supercomplexes. Taken together, these data demonstrate that PHB modulates mitochondrial integrity and bioenergetics under oxidative stress, and suggest that the protective effect of PHB is mediated by stabilization of the mitochondrial respiratory machinery and its functional capacity, by the regulation of cardiolipin content. Open Data: Materials are available on https://cos.io/our-services/open-science-badges/ https://osf.io/93n6m/.


Asunto(s)
Mitocondrias/metabolismo , Neuronas/ultraestructura , Estrés Oxidativo/fisiología , Células PC12/ultraestructura , Proteínas Represoras/metabolismo , Animales , Cardiolipinas/metabolismo , Supervivencia Celular , Células Cultivadas , Relación Dosis-Respuesta a Droga , Proteínas del Complejo de Cadena de Transporte de Electrón/metabolismo , Embrión de Mamíferos , Inhibidores Enzimáticos/farmacología , Humanos , Peróxido de Hidrógeno/farmacología , Ratones , Ratones Endogámicos C57BL , Mitocondrias/efectos de los fármacos , Mitocondrias/genética , Neuronas/efectos de los fármacos , Neuronas/metabolismo , Oligomicinas/farmacología , Oxidantes/farmacología , Estrés Oxidativo/efectos de los fármacos , Consumo de Oxígeno/fisiología , Prohibitinas , ARN Interferente Pequeño/genética , ARN Interferente Pequeño/metabolismo , Ratas , Proteínas Represoras/genética , Factores de Tiempo , Transfección
6.
J Cereb Blood Flow Metab ; 38(6): 1010-1020, 2018 06.
Artículo en Inglés | MEDLINE | ID: mdl-28714328

RESUMEN

The mitochondrial protein prohibitin (PHB) has emerged as an important modulator of neuronal survival in different injury modalities . We previously showed that viral gene transfer of PHB protects CA1 neurons from delayed neurodegeneration following transient forebrain ischemia through mitochondrial mechanisms. However, since PHB is present in all cell types, it is not known if its selective expression in neurons is protective, and if the protection occurs also in acute focal ischemic brain injury, the most common stroke type in humans. Therefore, we generated transgenic mice overexpressing human PHB1 specifically in neurons (PHB1 Tg). PHB1 Tg mice and littermate controls were subjected to transient middle cerebral artery occlusion (MCAo). Infarct volume and sensory-motor impairment were assessed three days later. Under the control of a neuronal promoter (CaMKIIα), PHB1 expression was increased by 50% in the forebrain and hippocampus in PHB1 Tg mice. The brain injury produced by MCAo was reduced by 63 ± 11% in PHB1 Tg mice compared to littermate controls. This reduction was associated with improved sensory-motor performance, suggesting that the salvaged brain remains functional. Approaches to enhance PHB expression may be useful to ameliorate the devastating impact of cerebral ischemia on the brain.


Asunto(s)
Isquemia Encefálica/metabolismo , Regulación de la Expresión Génica , Proteínas Mitocondriales/biosíntesis , Neuronas/metabolismo , Fármacos Neuroprotectores/metabolismo , Proteínas Represoras/biosíntesis , Animales , Isquemia Encefálica/genética , Isquemia Encefálica/patología , Proteína Quinasa Tipo 2 Dependiente de Calcio Calmodulina/genética , Proteína Quinasa Tipo 2 Dependiente de Calcio Calmodulina/metabolismo , Modelos Animales de Enfermedad , Humanos , Ratones , Ratones Transgénicos , Proteínas Mitocondriales/genética , Neuronas/patología , Prohibitinas , Proteínas Represoras/genética
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA