Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 264
Filtrar
1.
Science ; 384(6696): 677-682, 2024 May 10.
Artículo en Inglés | MEDLINE | ID: mdl-38723091

RESUMEN

Molecular rings of N carbon atoms (cyclo[N]carbons, or CN) are excellent benchmarking systems for testing quantum chemical theoretical methods and valuable precursors to other carbon-rich materials. Odd-N cyclocarbons, which have been elusive to date, are predicted to be even less stable than even-N cyclocarbons. We report the on-surface synthesis of cyclo[13]carbon, C13, by manipulation of decachlorofluorene with a scanning probe microscope tip. We elucidated the properties of C13 by experiment and theoretical modeling. C13 adopts an open-shell configuration with a triplet ground state and a kinked geometry, which shows different extents of distortion and carbene localization depending on the molecular environment. Moreover, we prepared and characterized the C13 dimer, cyclo[26]carbon, demonstrating the potential of cyclocarbons and their precursors as building blocks for carbon allotropes.

2.
Nat Nanotechnol ; 2024 Mar 25.
Artículo en Inglés | MEDLINE | ID: mdl-38528108

RESUMEN

Quantum effects in nanoscale electronic devices promise to lead to new types of functionality not achievable using classical electronic components. However, quantum behaviour also presents an unresolved challenge facing electronics at the few-nanometre scale: resistive channels start leaking owing to quantum tunnelling. This affects the performance of nanoscale transistors, with direct source-drain tunnelling degrading switching ratios and subthreshold swings, and ultimately limiting operating frequency due to increased static power dissipation. The usual strategy to mitigate quantum effects has been to increase device complexity, but theory shows that if quantum effects can be exploited in molecular-scale electronics, this could provide a route to lower energy consumption and boost device performance. Here we demonstrate these effects experimentally, showing how the performance of molecular transistors is improved when the resistive channel contains two destructively interfering waves. We use a zinc-porphyrin coupled to graphene electrodes in a three-terminal transistor to demonstrate a >104 conductance-switching ratio, a subthreshold swing at the thermionic limit, a >7 kHz operating frequency and stability over >105 cycles. We fully map the anti-resonance interference features in conductance, reproduce the behaviour by density functional theory calculations and trace back the high performance to the coupling between molecular orbitals and graphene edge states. These results demonstrate how the quantum nature of electron transmission at the nanoscale can enhance, rather than degrade, device performance, and highlight directions for future development of miniaturized electronics.

3.
Nat Chem ; 2024 Mar 08.
Artículo en Inglés | MEDLINE | ID: mdl-38459234

RESUMEN

Graphene nanoribbons (GNRs), nanometre-wide strips of graphene, are promising materials for fabricating electronic devices. Many GNRs have been reported, yet no scalable strategies are known for synthesizing GNRs with metal atoms and heteroaromatic units at precisely defined positions in the conjugated backbone, which would be valuable for tuning their optical, electronic and magnetic properties. Here we report the solution-phase synthesis of a porphyrin-fused graphene nanoribbon (PGNR). This PGNR has metalloporphyrins fused into a twisted fjord-edged GNR backbone; it consists of long chains (>100 nm), with a narrow optical bandgap (~1.0 eV) and high local charge mobility (>400 cm2 V-1 s-1 by terahertz spectroscopy). We use this PGNR to fabricate ambipolar field-effect transistors with appealing switching behaviour, and single-electron transistors displaying multiple Coulomb diamonds. These results open an avenue to π-extended nanostructures with engineerable electrical and magnetic properties by transposing the coordination chemistry of porphyrins into graphene nanoribbons.

4.
Nat Chem ; 2024 Mar 06.
Artículo en Inglés | MEDLINE | ID: mdl-38448656

RESUMEN

π-Conjugated macrocycles behave differently from analogous linear chains because their electronic wavefunctions resemble a quantum particle on a ring, leading to aromaticity or anti-aromaticity. [18]Annulene, (CH)18, is the archetypal non-benzenoid aromatic hydrocarbon. Molecules with circuits of 4n + 2 π electrons, such as [18]annulene (n = 4), are aromatic, with enhanced stability and diatropic ring currents (magnetic shielding inside the ring), whereas those with 4n π electrons, such as the dianion of [18]annulene, are expected to be anti-aromatic and exhibit the opposite behaviour. Here we use 1H NMR spectroscopy to re-evaluate the structure of the [18]annulene dianion. We also show that it can be reduced further to an aromatic tetraanion, which has the same shape as the dianion. The crystal structure of the tetraanion lithium salt confirms its geometry and reveals a metallocene-like sandwich, with five Li+ cations intercalated between two [18]annulene tetraanions. We also report a heteroleptic sandwich, with [18]annulene and corannulene tetraanion decks.

5.
J Am Chem Soc ; 146(6): 3651-3659, 2024 Feb 14.
Artículo en Inglés | MEDLINE | ID: mdl-38301131

RESUMEN

The search for long molecular wires that can transport charge with maximum efficiency over many nanometers has driven molecular electronics since its inception. Single-molecule conductance normally decays with length and is typically far below the theoretical limit of G0 (77.5 µS). Here, we measure the conductances of a family of edge-fused porphyrin ribbons (lengths 1-7 nm) that display remarkable behavior. The low-bias conductance is high across the whole series. Charging the molecules in situ results in a dramatic realignment of the frontier orbitals, increasing the conductance to 1 G0 (corresponding to a current of 20 µA). This behavior is most pronounced in the longer molecules due to their smaller HOMO-LUMO gaps. The conductance-voltage traces frequently exhibit peaks at zero bias, showing that a molecular energy level is in resonance with the Fermi level. This work lays the foundations for long, perfectly transmissive, molecular wires with technological potential.

6.
Angew Chem Int Ed Engl ; 63(16): e202401323, 2024 Apr 15.
Artículo en Inglés | MEDLINE | ID: mdl-38410064

RESUMEN

When designing a molecular electronic device for a specific function, it is necessary to control whether the charge-transport mechanism is phase-coherent transmission or particle-like hopping. Here we report a systematic study of charge transport through single zinc-porphyrin molecules embedded in graphene nanogaps to form transistors, and show that the transport mechanism depends on the chemistry of the molecule-electrode interfaces. We show that van der Waals interactions between molecular anchoring groups and graphene yield transport characteristic of Coulomb blockade with incoherent sequential hopping, whereas covalent molecule-electrode amide bonds give intermediately or strongly coupled single-molecule devices that display coherent transmission. These findings demonstrate the importance of interfacial engineering in molecular electronic circuits.

7.
Angew Chem Int Ed Engl ; 63(14): e202400103, 2024 Apr 02.
Artículo en Inglés | MEDLINE | ID: mdl-38230920

RESUMEN

Strained macrocycles display interesting properties, such as conformational rigidity, often resulting in enhanced π-conjugation or enhanced affinity for non-covalent guest binding, yet they can be difficult to synthesize. Here we use computational modeling to design a template to direct the formation of an 18-porphyrin nanoring with direct meso-meso bonds between the porphyrin units. Coupling of a linear 18-porphyrin oligomer in the presence of this template gives the target nanoring, together with an unexpected 36-porphyrin ring by-product. Scanning tunneling microscopy (STM) revealed the elliptical conformations and flexibility of these nanorings on a Au(111) surface.

8.
Nat Chem ; 16(2): 193-200, 2024 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-37973943

RESUMEN

Polyynes are chains of sp1 carbon atoms with alternating single and triple bonds. As they become longer, they evolve towards carbyne, the 1D allotrope of carbon, and they become increasingly unstable. It has been anticipated that long polyynes could be stabilized by supramolecular encapsulation, by threading them through macrocycles to form polyrotaxanes-but, until now, polyyne polyrotaxanes with many threaded macrocycles have been synthetically inaccessible. Here we show that masked alkynes, in which the C≡C triple bond is temporarily coordinated to cobalt, can be used to synthesize polyrotaxanes, up to the C68 [5]rotaxane with 34 contiguous triple bonds and four threaded macrocycles. This is the length regime at which the electronic properties of polyynes converge to those of carbyne. Cyclocarbons constitute a related family of molecular carbon allotropes, and cobalt-masked alkynes also provide a route to [3]catenanes and [5]catenanes built around cobalt complexes of cyclo[40]carbon and cyclo[80]carbon, respectively.

9.
J Am Chem Soc ; 145(49): 26962-26972, 2023 Dec 13.
Artículo en Inglés | MEDLINE | ID: mdl-38039504

RESUMEN

Aromaticity is typically regarded as an intrinsic property of a molecule, correlated with electron delocalization, stability, and other properties. Small variations in the molecular geometry usually result in small changes in aromaticity, in line with Hammond's postulate. For example, introducing bond-length alternation in benzene and square cyclobutadiene by modulating the geometry along the Kekulé vibration gradually decreases the magnitude of their ring currents, making them less aromatic and less antiaromatic, respectively. A sign change in the ring current, corresponding to a reversal of aromaticity, typically requires a gross perturbation such as electronic excitation, addition or removal of two electrons, or a dramatic change in the molecular geometry. Here, we use multireference calculations to show how movement along the Kekulé vibration, which controls bond-length alternation, induces a sudden reversal in the ring current of cyclo[16]carbon, C16. This reversal occurs when the two orthogonal π systems of C16 sustain opposing currents. These results are rationalized by a Hückel model which includes bond-length alternation, and which is combined with a minimal model accounting for orbital contributions to the ring current. Finally, we successfully describe the electronic structure of C16 with a "divide-and-conquer" approach suitable for execution on a quantum computer.

10.
Chem Sci ; 14(48): 14109-14114, 2023 Dec 13.
Artículo en Inglés | MEDLINE | ID: mdl-38098717

RESUMEN

[24]Paracyclophanetetraene is a classic example of a macrocyclic hydrocarbon that becomes globally aromatic on reduction to the di-anion, and switches to globally anti-aromatic in the tetra-anion. This redox activity makes it promising as an electrode material for batteries. Here, we report the solid-state structures of the di- and tetra-anions of this cyclophane, in several coordination environments. The changes in bond length on reduction yield insights into the global aromaticity of the di-anion (26π electrons), and anti-aromaticity of the tetra-anion (28π electrons), that were previously deduced from NMR spectra of species generated in situ. The experimental geometries of the aromatic di-anion and anti-aromatic tetra-anion from X-ray crystallographic data match well with gas-phase calculated structures, and reproduce the low symmetry expected in the anti-aromatic ring. Comparison of coordinated and naked anions confirms that metal coordination has little effect on the bond lengths. The UV-vis-NIR absorption spectra show a sharp intense peak at 878 nm for the di-anion, whereas the tetra-anion gives a broad spectrum typical of an anti-aromatic system.

11.
J Magn Reson ; 355: 107546, 2023 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-37797559

RESUMEN

The photoexcited triplet states of porphyrins show great promise for applications in the fields of opto-electronics, photonics, molecular wires, and spintronics. The magnetic properties of porphyrin triplet states are most conveniently studied by time-resolved continuous wave and pulse electron spin resonance (ESR). This family of techniques is singularly able to probe small yet essential details of triplet states: zero-field splittings, g-anisotropy, spin polarisation, and hyperfine interactions. These characteristics are linked to spin-orbit coupling (SOC) which is known to have a strong influence on photophysical properties such as intersystem crossing rates. The present study explores SOC effects induced by the presence of Pd2+ in various porphyrin architectures. In particular, the impact of this relativistic interaction on triplet state fine-structure and spin polarisation is investigated. These properties are probed using time-resolved ESR complemented by electron-nuclear double resonance. The findings of this study could influence the future design of molecular spintronic devices. The Pd2+ ion may be incorporated into porphyrin molecular wires as a way of controlling spin polarisation.

12.
Nature ; 623(7989): 977-981, 2023 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-37880363

RESUMEN

Synthetic carbon allotropes such as graphene1, carbon nanotubes2 and fullerenes3 have revolutionized materials science and led to new technologies. Many hypothetical carbon allotropes have been discussed4, but few have been studied experimentally. Recently, unconventional synthetic strategies such as dynamic covalent chemistry5 and on-surface synthesis6 have been used to create new forms of carbon, including γ-graphyne7, fullerene polymers8, biphenylene networks9 and cyclocarbons10,11. Cyclo[N]carbons are molecular rings consisting of N carbon atoms12,13; the three that have been reported to date (N = 10, 14 and 18)10,11 are doubly aromatic, which prompts the question: is it possible to prepare doubly anti-aromatic versions? Here we report the synthesis and characterization of an anti-aromatic carbon allotrope, cyclo[16]carbon, by using tip-induced on-surface chemistry6. In addition to structural information from atomic force microscopy, we probed its electronic structure by recording orbital density maps14 with scanning tunnelling microscopy. The observation of bond-length alternation in cyclo[16]carbon confirms its double anti-aromaticity, in concordance with theory. The simple structure of C16 renders it an interesting model system for studying the limits of aromaticity, and its high reactivity makes it a promising precursor to novel carbon allotropes15.

13.
Chem Sci ; 14(34): 9123-9135, 2023 Aug 30.
Artículo en Inglés | MEDLINE | ID: mdl-37655022

RESUMEN

Dithienylethenes are a type of diarylethene and they constitute one of the most widely studied classes of photoswitch, yet there have been no systematic studies of how electron-donor or -acceptor substituents affect their properties. Here we report eight dithienylethenes bearing push-push, pull-pull and push-pull substitution patterns with different lengths of conjugation in the backbone and investigate their photophysical and photochemical properties. Donor-acceptor interactions in the closed forms of push-pull dithienylethenes shift their absorption spectra into the near-infrared region (λmax ≈ 800 nm). The push-pull systems also exhibit low quantum yields for photochemical electrocyclization, and computational studies indicate that this can be attributed to stabilization of the parallel, rather than anti-parallel, conformations. The pull-pull systems have the highest quantum yields for switching in both directions, ring-closure and ring-opening. The chloride salt of a pull-pull DTE, with alkynes on both arms, is the first water-soluble dithienylethene that can achieve >95% photostationary state distribution in both directions with visible light. It has excellent fatigue resistance: in aqueous solution on irradiation at 365 nm, the photochemical quantum yields for switching and decomposition are 0.15 and 2.6 × 10-5 respectively, i.e. decomposition is more than 5000 times slower than photoswitching. These properties make it a promising candidate for biological applications such as super-resolution microscopy and photopharmacology.

14.
J Am Chem Soc ; 145(28): 15265-15274, 2023 Jul 19.
Artículo en Inglés | MEDLINE | ID: mdl-37417934

RESUMEN

Since the early days of quantum mechanics, it has been known that electrons behave simultaneously as particles and waves, and now quantum electronic devices can harness this duality. When devices are shrunk to the molecular scale, it is unclear under what conditions does electron transmission remain phase-coherent, as molecules are usually treated as either scattering or redox centers, without considering the wave-particle duality of the charge carrier. Here, we demonstrate that electron transmission remains phase-coherent in molecular porphyrin nanoribbons connected to graphene electrodes. The devices act as graphene Fabry-Pérot interferometers and allow for direct probing of the transport mechanisms throughout several regimes. Through electrostatic gating, we observe electronic interference fringes in transmission that are strongly correlated to molecular conductance across multiple oxidation states. These results demonstrate a platform for the use of interferometric effects in single-molecule junctions, opening up new avenues for studying quantum coherence in molecular electronic and spintronic devices.

15.
Chem Sci ; 14(21): 5569-5576, 2023 May 31.
Artículo en Inglés | MEDLINE | ID: mdl-37265727

RESUMEN

Aromaticity is one of the most deeply rooted concepts in chemistry. But why, if two-thirds of existing compounds can be classified as aromatic, is there no consensus on what aromaticity is? σ-, π-, δ-, spherical, Möbius, or all-metal aromaticity… why are so many attributes needed to specify a property? Is aromaticity a dubious concept? This perspective aims to reflect where the aromaticity community is and where it is going.

16.
Angew Chem Int Ed Engl ; 62(31): e202307035, 2023 Aug 01.
Artículo en Inglés | MEDLINE | ID: mdl-37293835

RESUMEN

π-Conjugated nanoribbons attract interest because of their unusual electronic structures and charge-transport behavior. Here, we report the synthesis of a series of fully edge-fused porphyrin-anthracene oligomeric ribbons (dimer and trimer), together with a computational study of the corresponding infinite polymer. The porphyrin dimer and trimer were synthesized in high yield, via oxidative cyclodehydrogenation of singly linked precursors, using 2,3-dichloro-5,6-dicyano-1,4-benzoquinone (DDQ) and trifluoromethanesulfonic acid (TfOH). The crystal structure of the dimer shows that the central π-system is flat, with a slight S-shaped wave distortion at each porphyrin terminal. The extended π-conjugation causes a dramatic red-shift in the absorption spectra: the absorption maxima of the fused dimer and trimer appear at 1188 nm and 1642 nm, respectively (for the nickel complexes dissolved in toluene). The coordinated metal in the dimer was changed from Ni to Mg, using p-tolylmagnesium bromide, providing access to free-base and Zn complexes. These results open a versatile avenue to longer π-conjugated nanoribbons with integrated metalloporphyrin units.

17.
J Am Chem Soc ; 145(21): 11859-11865, 2023 May 31.
Artículo en Inglés | MEDLINE | ID: mdl-37201942

RESUMEN

Cyclic porphyrin oligomers have been studied as models for photosynthetic light-harvesting antenna complexes and as potential receptors for supramolecular chemistry. Here, we report the synthesis of unprecedented ß,ß-directly linked cyclic zinc porphyrin oligomers, the trimer (CP3) and tetramer (CP4), by Yamamoto coupling of a 2,3-dibromoporphyrin precursor. Their three-dimensional structures were confirmed by nuclear magnetic resonance (NMR) spectroscopy, mass spectrometry, and single-crystal X-ray diffraction analyses. The minimum-energy geometries of CP3 and CP4 have propeller and saddle shapes, respectively, as calculated using density functional theory. Their different geometries result in distinct photophysical and electrochemical properties. The smaller dihedral angles between the porphyrin units in CP3, compared with CP4, result in stronger π-conjugation, splitting the ultraviolet-vis absorption bands and shifting them to longer wavelengths. Analysis of the crystallographic bond lengths indicates that the central benzene ring of the CP3 is partially aromatic [harmonic oscillator model of aromaticity (HOMA) 0.52], whereas the central cyclooctatetraene ring of the CP4 is non-aromatic (HOMA -0.02). The saddle-shaped structure of CP4 makes it a ditopic receptor for fullerenes, with affinity constants of (1.1 ± 0.4) × 105 M-1 for C70 and (2.2 ± 0.1) × 104 M-1 for C60, respectively, in toluene solution at 298 K. The formation of a 1:2 complex with C60 is confirmed by NMR titration and single-crystal X-ray diffraction.

18.
Angew Chem Int Ed Engl ; 62(18): e202302114, 2023 Apr 24.
Artículo en Inglés | MEDLINE | ID: mdl-36877745

RESUMEN

Rings of porphyrins mimic natural light-harvesting chlorophyll arrays and offer insights into electronic delocalization, providing a motivation for creating larger nanorings with closely spaced porphyrin units. Here, we demonstrate the first synthesis of a macrocycle consisting entirely of 5,15-linked porphyrins. This porphyrin octadecamer was constructed using a covalent six-armed template, made by cobalt-catalyzed cyclotrimerization of an H-shaped tolan with porphyrin trimer ends. The porphyrins around the circumference of the nanoring were linked together by intramolecular oxidative meso-meso coupling and partial ß-ß fusion, to give a nanoring consisting of six edge-fused zinc(II) porphyrin dimer units and six un-fused nickel(II) porphyrins. STM imaging on a gold surface confirms the size and shape of the spoked 18-porphyrin nanoring (calculated diameter: 4.7 nm).

19.
Chemphyschem ; 24(12): e202300125, 2023 Jun 15.
Artículo en Inglés | MEDLINE | ID: mdl-36946252

RESUMEN

A switchable solvatochromic fluorescent dyad can be used to map ordering of lipids in vesicle membranes at a resolution better than the diffraction limit. Combining a Nile Red fluorophore with a photochromic spironaphthoxazine quencher allows the fluorescence to be controlled using visible light, via photoswitching and FRET quenching. Synthetic lipid vesicles of varying composition were imaged with an average 2.5-fold resolution enhancement, compared to the confocal images. Ratiometric detection was used to probe the membrane polarity, and domains of different lipid ordering were distinguished within the same membrane.


Asunto(s)
Colorantes Fluorescentes , Luz , Microscopía Fluorescente/métodos , Colorantes Fluorescentes/química , Lípidos
20.
Chem Sci ; 14(7): 1762-1768, 2023 Feb 15.
Artículo en Inglés | MEDLINE | ID: mdl-36819862

RESUMEN

Magnetic field-induced ring currents in aromatic and antiaromatic molecules cause characteristic shielding and deshielding effects in the molecules' NMR spectra. However, it is difficult to analyze (anti)aromaticity directly from experimental NMR data if a molecule has multiple ring current pathways. Here we present a method for using the Biot-Savart law to deconvolute the contributions of different ring currents to the experimental NMR spectra of polycyclic compounds. This method accurately quantifies local and global ring current susceptibilities in porphyrin nanorings, as well as in a bicyclic dithienothiophene-bridged [34]octaphyrin. There is excellent agreement between ring current susceptibilities derived from both experimental and computationally-predicted chemical shifts, and with ring currents calculated by the GIMIC method. Our method can be applied to any polycyclic system, with any number of ring currents, provided that appropriate NMR data are available.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...