Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 17 de 17
Filtrar
Más filtros











Base de datos
Intervalo de año de publicación
1.
Sci Rep ; 6: 30504, 2016 07 28.
Artículo en Inglés | MEDLINE | ID: mdl-27465654

RESUMEN

High harmonic generation (HHG) is an established means of producing coherent, short wavelength, ultrafast pulses from a compact set-up. Table-top high-harmonic sources are increasingly being used to image physical and biological systems using emerging techniques such as coherent diffraction imaging and ptychography. These novel imaging methods require coherent illumination, and it is therefore important to both characterize the spatial coherence of high-harmonic beams and understand the processes which limit this property. Here we investigate the near- and far-field spatial properties of high-harmonic radiation generated in a gas cell. The variation with harmonic order of the intensity profile, wavefront curvature, and complex coherence factor is measured in the far-field by the SCIMITAR technique. Using the Gaussian-Schell model, the properties of the harmonic beam in the plane of generation are deduced. Our results show that the order-dependence of the harmonic spatial coherence is consistent with partial coherence induced by both variation of the intensity-dependent dipole phase as well as finite spatial coherence of the driving radiation. These findings are used to suggest ways in which the coherence of harmonic beams could be increased further, which would have direct benefits to imaging with high-harmonic radiation.

2.
Exp Neurol ; 263: 150-60, 2015 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-25448158

RESUMEN

Sulf1 and Sulf2 are endosulfatases that cleave 6-O-sulphate groups from Heparan Sulphate Proteoglycans (HSPGs). Sulfation levels of HSPGs are critical for their role in modulating the activity of various growth factor receptors. Sulf1 and Sulf2 mRNAs were found to be widely expressed in the rodent nervous system and their full-length proteins were found in many types of neuronal perikarya and axons in the cerebral cortex, cerebellum, spinal cord and dorsal root ganglia (DRG) of adult rats. Sulf1/2 were also strongly expressed by cultured DRG neurons. To determine if blocking Sulf1 or Sulf2 activity affected neurite outgrowth in vitro, cultured DRG neurons were treated with neutralising antibodies to Sulf1 or Sulf2. Blocking Sulf1 and Sulf2 activity did not affect neurite outgrowth from cultured DRG neurons grown on a laminin/polylysine substrate but ameliorated the inhibitory effects of chondroitin sulphate proteoglycans (CSPGs) on neurite outgrowth. Blocking epidermal growth factor receptor (ErbB1) activity also improved neurite outgrowth in the presence of CSPGs, but the effects of ErbB1 antagonists and blocking SULFs were not additive. It is proposed that Sulf1, Sulf2 and ErbB1 are involved in the signalling pathway from CSPGs that leads to inhibition of neurite outgrowth and may regulate structural plasticity and regeneration in the nervous system.


Asunto(s)
Regeneración Nerviosa/fisiología , Neuritas/metabolismo , Sulfatasas/biosíntesis , Sulfotransferasas/biosíntesis , Animales , Western Blotting , Encéfalo/metabolismo , Receptores ErbB/biosíntesis , Ganglios Espinales/metabolismo , Inmunohistoquímica , Técnicas In Vitro , Ratones , Ratas , Ratas Sprague-Dawley , Reacción en Cadena de la Polimerasa de Transcriptasa Inversa , Nervio Ciático/metabolismo , Médula Espinal/metabolismo
3.
Exp Neurol ; 239: 82-90, 2013 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-23022459

RESUMEN

Pharmacological inhibitors of epidermal growth factor receptor (ErbB1) attenuate the ability of CNS myelin to inhibit axonal regeneration. However, it has been claimed that such effects are mediated by off-target interactions. We have tested the role of ErbB1 in axonal regeneration by culturing neurons from ErbB1 knockout mice in the presence of various inhibitors of axonal regeneration: CNS myelin, chondroitin sulfate proteoglycans (CSPG), fibrinogen or polyinosinic:polycytidylic acid (poly I:C). We confirmed that ErbB1 was activated in cultures of cerebellar granule cells exposed to inhibitors of axonal regeneration and that ErbB1 kinase inhibitors promoted neurite outgrowth under these conditions. In the presence of myelin, fibrinogen, CSPG and poly I:C ErbB1 -/- neurons grew longer neurites than neurons expressing ErbB1. Furthermore, inhibitors of ErbB1 kinase did not improve neurite outgrowth from ErbB1 -/- neurons, ruling out an off-target mechanism of action. ErbB1 kinase activity is therefore a valid target for promoting axonal elongation in the presence of many of the molecules believed to contribute to the failure of axonal regeneration in the injured CNS.


Asunto(s)
Axones/efectos de los fármacos , Genes erbB-1/efectos de los fármacos , Regeneración Nerviosa/efectos de los fármacos , Animales , Barrera Hematoencefálica/efectos de los fármacos , Señalización del Calcio/fisiología , Cerebelo/citología , Sulfatos de Condroitina/farmacología , Gránulos Citoplasmáticos , Fibrinógeno/farmacología , Ratones , Ratones Noqueados , Vaina de Mielina/fisiología , Fosforilación , Poli I-C/farmacología , Proteoglicanos/farmacología , Quinazolinas/farmacología , ARN/metabolismo , ARN Bicatenario/farmacología , Células Receptoras Sensoriales/efectos de los fármacos , Receptor Toll-Like 3/efectos de los fármacos
4.
J Neurosci ; 31(18): 6809-6819, 2011 May 04.
Artículo en Inglés | MEDLINE | ID: mdl-21543611

RESUMEN

In the developing spinal cord, most oligodendrocyte precursors (OLPs) arise from the ventral ventricular zone (VZ) under the influence of Sonic Hedgehog, but a minority are generated from the dorsal VZ in a Hedgehog-independent manner. In the developing forebrain too, OLPs arise from both the ventral and the dorsal VZ. It is not known whether dorsally and ventrally derived oligodendrocyte (OL) lineage cells have different properties. We generated a dual reporter mouse line to color code ventrally and dorsally derived OLPs (vOLPs and dOLPs) and their differentiated oligodendrocyte progeny (vOLs and dOLs) for functional studies. We found that ∼80% of OL lineage cells in the postnatal spinal cord and ∼20% in the corpus callosum are ventrally derived. In both spinal cord and corpus callosum, vOLPs and dOLPs had indistinguishable electrical properties, as did vOLs and dOLs. However, vOLPs and dOLPs had different migration and settling patterns. In the spinal cord, vOLPs appeared early and spread uniformly throughout the cord, whereas dOLPs arrived later and remained mainly in the dorsal and dorsolateral funiculi. During adulthood, corticospinal and rubrospinal tracts became myelinated mainly by dOLs, even though vOLs dominated these tracts during early postnatal life. Thus, dOLPs are electrically similar to vOLPs but appear to outcompete them for dorsal axons.


Asunto(s)
Linaje de la Célula/fisiología , Cuerpo Calloso/fisiología , Vaina de Mielina/fisiología , Oligodendroglía/fisiología , Médula Espinal/fisiología , Animales , Electrofisiología , Inmunohistoquímica , Ratones , Ratones Transgénicos
5.
Mol Cell Neurosci ; 46(1): 167-75, 2011 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-20828614

RESUMEN

Virus mediated RNA-interference (RNAi) is a powerful approach to study genes in vivo. Here we report a method using lentivirus-delivered RNAi to knockdown the glial enzyme, D-amino acid oxidase (DAO), in the mouse cerebellum. After initial characterisation in vitro, we achieved a 40-50% reduction of DAO mRNA in the cerebellum 7 and 28 days after a single injection of lentivirus encoding a DAO-specific, short-hairpin RNA. Injections also decreased DAO immunoreactivity (-33%). The major substrate for DAO is D-serine, an N-methyl-D-aspartate receptor (NMDAR) co-agonist. Thus, we also measured whether DAO knockdown impacted on d-serine, or expression of NMDAR subunits, and found that DAO RNAi led to increased cerebellar D-serine levels (+77%), and decreased NMDAR subunit NR2A mRNA (-22%), but did not affect NR1 or NR2C mRNAs. These data demonstrate the utility of lentiviruses to deliver RNAi to glial cells within the cerebellum, and confirm the role of DAO in D-serine metabolism. They also provide a tool to investigate DAO, an enzyme currently of considerable interest in the pathophysiology and therapy of schizophrenia.


Asunto(s)
Cerebelo/enzimología , D-Aminoácido Oxidasa/genética , D-Aminoácido Oxidasa/metabolismo , Técnicas de Silenciamiento del Gen , ARN Mensajero/metabolismo , Receptores de N-Metil-D-Aspartato/genética , Animales , Línea Celular , Vectores Genéticos/genética , Vectores Genéticos/metabolismo , Proteínas Fluorescentes Verdes/genética , Proteínas Fluorescentes Verdes/metabolismo , Lentivirus/genética , Lentivirus/metabolismo , Masculino , Trastornos Mentales/fisiopatología , Ratones , Ratones Endogámicos C57BL , Subunidades de Proteína/genética , Subunidades de Proteína/metabolismo , Interferencia de ARN , Ratas , Receptores de N-Metil-D-Aspartato/metabolismo , Serina/metabolismo
6.
BMC Neurosci ; 11: 13, 2010 Feb 05.
Artículo en Inglés | MEDLINE | ID: mdl-20137064

RESUMEN

BACKGROUND: Microglia/macrophages and lymphocytes (T-cells) accumulate around motor and primary sensory neurons that are regenerating axons but there is little or no microglial activation or T-cell accumulation around axotomised intrinsic CNS neurons, which do not normally regenerate axons. We aimed to establish whether there was an inflammatory response around the perikarya of CNS neurons that were induced to regenerate axons through a peripheral nerve graft. RESULTS: When neurons of the thalamic reticular nucleus (TRN) and red nucleus were induced to regenerate axons along peripheral nerve grafts, a marked microglial response was found around their cell bodies, including the partial enwrapping of some regenerating neurons. T-cells were found amongst regenerating TRN neurons but not rubrospinal neurons. Axotomy alone or insertion of freeze-killed nerve grafts did not induce a similar perineuronal inflammation. Nerve grafts in the corticospinal tracts did not induce axonal regeneration or a microglial or T-cell response in the motor cortex. CONCLUSIONS: These results strengthen the evidence that perineuronal microglial accumulation (but not T-cell accumulation) is involved in axonal regeneration by intrinsic CNS and other neurons.


Asunto(s)
Axones/fisiología , Microglía/fisiología , Regeneración Nerviosa/fisiología , Neuronas/fisiología , Núcleo Rojo/fisiología , Núcleos Talámicos/fisiología , Animales , Axotomía , Trasplante de Tejido Encefálico , Muerte Celular , Nervio Facial/fisiología , Nervio Facial/cirugía , Femenino , Congelación , Masculino , Corteza Motora/fisiología , Neuronas/trasplante , Nervios Periféricos/cirugía , Tractos Piramidales/fisiología , Tractos Piramidales/cirugía , Ratas , Ratas Sprague-Dawley , Núcleo Rojo/cirugía , Linfocitos T/fisiología , Núcleos Talámicos/cirugía
7.
J Comp Neurol ; 518(5): 699-721, 2010 Mar 01.
Artículo en Inglés | MEDLINE | ID: mdl-20034058

RESUMEN

Generation of new axonal sprouts plays an important role in neural repair. In the current study, we examined the appearance, composition and effects of gene deletions on intrabrainstem sprouts following peripheral facial nerve axotomy. Axotomy was followed by the appearance of galanin(+) and calcitonin gene-related peptide (CGRP)(+) sprouts peaking at day 14, matching both large, neuropeptide(+) subpopulations of axotomized facial motoneurons, but with CGRP(+) sprouts considerably rarer. Strong immunoreactivity for vesicular acetylcholine transporter (VAChT) and retrogradely transported MiniRuby following its application on freshly cut proximal facial nerve stump confirmed their axotomized motoneuron origin; the sprouts expressed CD44 and alpha7beta1 integrin adhesion molecules and grew apparently unhindered along neighboring central white matter tracts. Quantification of the galanin(+) sprouts revealed a stronger response following cut compared with crush (day 7-14) as well as enhanced sprouting after recut (day 8 + 6 vs. 14; 14 + 8 vs. 22), arguing against delayed appearance of sprouting being the result of the initial phase of reinnervation. Sprouting was strongly diminished in brain Jun-deficient mice but enhanced in alpha7 null animals that showed apparently compensatory up-regulation in beta1, suggesting important regulatory roles for transcription factors and the sprout-associated adhesion molecules. Analysis of inflammatory stimuli revealed a 50% reduction 12-48 hours following systemic endotoxin associated with neural inflammation and a tendency toward more sprouts in TNFR1/2 null mutants (P = 10%) with a reduced inflammatory response, indicating detrimental effects of excessive inflammation. Moreover, the study points to the usefulness of the facial axotomy model in exploring physiological and molecular stimuli regulating central sprouting.


Asunto(s)
Traumatismos del Nervio Facial/fisiopatología , Nervio Facial/fisiología , Conos de Crecimiento/ultraestructura , Neuronas Motoras/fisiología , Regeneración Nerviosa/fisiología , Plasticidad Neuronal/fisiología , Animales , Axotomía , Péptido Relacionado con Gen de Calcitonina/metabolismo , Moléculas de Adhesión Celular/metabolismo , Nervio Facial/metabolismo , Traumatismos del Nervio Facial/metabolismo , Galanina/metabolismo , Eliminación de Gen , Conos de Crecimiento/metabolismo , Inmunohistoquímica , Integrinas/genética , Ratones , Ratones Noqueados , Ratones Transgénicos , Neuronas Motoras/metabolismo , Proteína Oncogénica p65(gag-jun)/genética , Receptores Tipo I de Factores de Necrosis Tumoral/genética , Receptores Tipo II del Factor de Necrosis Tumoral/genética , Factores de Tiempo , Proteínas de Transporte Vesicular de Acetilcolina/metabolismo
8.
Mol Cell Neurosci ; 39(2): 152-60, 2008 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-18617007

RESUMEN

After traumatic CNS injury, a cascade of secondary events expands the initial lesion. The gap-junction protein connexin43 (Cx43), which is transiently up-regulated, has been implicated in the spread of 'bystander' damage. We have used an antisense oligodeoxynucleotide (asODN) to suppress Cx43 up-regulation in two rat models of spinal cord injury. Within 24 h of compression injury, rats treated with Cx43-asODN scored higher than sense-ODN and vehicle-treated controls on behavioural tests of locomotion. Their spinal cords showed less swelling and tissue disruption, less up-regulation of astrocytic GFAP, and less extravasation of fluorescently-labelled bovine serum albumin and neutrophils. The locomotor improvement was sustained over at least 4 weeks. Following partial spinal cord transection, Cx43-asODN treatment reduced GFAP immunoreactivity, neutrophil recruitment, and the activity of OX42(+) microglia in and around the lesion site. Cx43 has many potential roles in the pathophysiology of CNS injury and may be a valuable target for therapeutic intervention.


Asunto(s)
Conexina 43/metabolismo , Regulación hacia Abajo/fisiología , Inflamación/tratamiento farmacológico , Oligodesoxirribonucleótidos Antisentido/uso terapéutico , Recuperación de la Función/fisiología , Traumatismos de la Médula Espinal/complicaciones , Animales , Antígeno CD11b/metabolismo , Permeabilidad Capilar/efectos de los fármacos , Permeabilidad Capilar/fisiología , Conexina 43/antagonistas & inhibidores , Modelos Animales de Enfermedad , Regulación hacia Abajo/efectos de los fármacos , Proteína Ácida Fibrilar de la Glía/metabolismo , Inflamación/etiología , Inflamación/metabolismo , Inflamación/patología , Locomoción/efectos de los fármacos , Masculino , Microglía/efectos de los fármacos , Oligodesoxirribonucleótidos Antisentido/farmacología , Ratas , Ratas Sprague-Dawley , Recuperación de la Función/efectos de los fármacos , Traumatismos de la Médula Espinal/tratamiento farmacológico , Traumatismos de la Médula Espinal/patología , Factores de Tiempo
9.
BMC Neurosci ; 8: 80, 2007 Sep 27.
Artículo en Inglés | MEDLINE | ID: mdl-17900358

RESUMEN

BACKGROUND: The chondroitin sulphate proteoglycan NG2 blocks neurite outgrowth in vitro and has been proposed as a major inhibitor of axonal regeneration in the CNS. Although a substantial body of evidence underpins this hypothesis, it is challenged by recent findings including strong expression of NG2 in regenerating peripheral nerve. RESULTS: We studied axonal regeneration in the PNS and CNS of genetically engineered mice that do not express NG2, and in sex and age matched wild-type controls. In the CNS, we used anterograde tracing with BDA to study corticospinal tract (CST) axons after spinal cord injury and transganglionic labelling with CT-HRP to trace ascending sensory dorsal column (DC) axons after DC lesions and a conditioning lesion of the sciatic nerve. Injury to these fibre tracts resulted in no difference between knockout and wild-type mice in the ability of CST axons or DC axons to enter or cross the lesion site. Similarly, after dorsal root injury (with conditioning lesion), most regenerating dorsal root axons failed to grow across the dorsal root entry zone in both transgenic and wild-type mice. Following sciatic nerve injuries, functional recovery was assessed by analysis of the toe-spreading reflex and cutaneous sensitivity to Von Frey hairs. Anatomical correlates of regeneration were assessed by: retrograde labelling of regenerating dorsal root ganglion (DRG) cells with DiAsp; immunostaining with PGP 9.5 to visualise sensory reinnervation of plantar hindpaws; electron microscopic analysis of regenerating axons in tibial and digital nerves; and by silver-cholinesterase histochemical study of motor end plate reinnervation. We also examined functional and anatomical correlates of regeneration after injury of the facial nerve by assessing the time taken for whisker movements and corneal reflexes to recover and by retrograde labelling of regenerated axons with Fluorogold and DiAsp. None of the anatomical or functional analyses revealed significant differences between wild-type and knockout mice. CONCLUSION: These findings show that NG2 is unlikely to be a major inhibitor of axonal regeneration after injury to the CNS, and, further, that NG2 is unlikely to be necessary for regeneration or functional recovery following peripheral nerve injury.


Asunto(s)
Axones/fisiología , Sistema Nervioso Central/patología , Regeneración Nerviosa/fisiología , Enfermedades del Sistema Nervioso/patología , Sistema Nervioso Periférico/patología , Proteoglicanos/deficiencia , Animales , Antígenos , Sistema Nervioso Central/fisiopatología , Modelos Animales de Enfermedad , Ratones , Ratones Endogámicos C57BL , Ratones Noqueados , Enfermedades del Sistema Nervioso/fisiopatología , Sistema Nervioso Periférico/fisiopatología , Compuestos de Piridinio , Recuperación de la Función/fisiología , Estilbamidinas , Ubiquitina Tiolesterasa/metabolismo
10.
J Neurosci Res ; 84(2): 278-90, 2006 Aug 01.
Artículo en Inglés | MEDLINE | ID: mdl-16683235

RESUMEN

To understand whether tissue inhibitors of metalloproteinase (TIMPs) contribute to the failure of regenerating sensory axons to enter the spinal cord, we used in situ hybridization and immunocytochemistry to examine the expression of TIMP1, TIMP2, and TIMP3 in the dorsal root, dorsal root entry zone (DREZ), and dorsal column after dorsal root injury in adult rats. We found that the three TIMPs and their mRNAs were up-regulated in a time-, region-, and cell-type-specific manner. Strong up-regulation of all three TIMPs was seen in the injured dorsal roots. TIMP2 was also significantly up-regulated in the DREZ and degenerating dorsal column, where TIMP1 and TIMP3 showed only moderate up-regulation. Most cells up-regulating the TIMPs in the DREZ and degenerating dorsal column were reactive astrocytes, but TIMP2 was also up-regulated by microglia/macrophages, especially at long postoperative survival times. These results suggest that TIMPs may be involved in controlling tissue remodelling following dorsal root injury and that manipulation of the expression of TIMPs may provide a means of promoting axonal regeneration into and within the injured spinal cord.


Asunto(s)
Regeneración Nerviosa/fisiología , Médula Espinal/enzimología , Raíces Nerviosas Espinales/enzimología , Raíces Nerviosas Espinales/lesiones , Inhibidores Tisulares de Metaloproteinasas/metabolismo , Animales , Femenino , Lateralidad Funcional , Proteína Ácida Fibrilar de la Glía/metabolismo , Procesamiento de Imagen Asistido por Computador , Inmunohistoquímica , Hibridación in Situ , ARN Mensajero/análisis , Ratas , Ratas Sprague-Dawley , Factores de Tiempo , Regulación hacia Arriba
11.
Front Biosci ; 11: 2967-75, 2006 Sep 01.
Artículo en Inglés | MEDLINE | ID: mdl-16720368

RESUMEN

The ability to down regulate the expression of a specific protein within the intact central nervous system (CNS) is highly desirable from both a research and therapeutic perspective. Antisense has the potential to do this. However, problems of invasive antisense delivery methods and short half life of remain problematic. We overcome this by using Pluronic gel to provide a sustained delivery antisense oligodeoxynucleotides (ODN's) to the intact central nervous system and achieving rapid penetration throughout the spinal cord in 2-3 hours and significant knockdown of our target protein connexin 43 (Cx43) in 4-8 hours (recovering at 48-72 hours). Interestingly CY3-siRNA probes could not be detected penetrating the intact CNS and no knockdown the Cx43 was found. This approach with conventional ODNs could provide a faster and cheaper alternative to knockout mice in the investigation of the functions of specific proteins within the CNS and may also have therapeutic implications for drug discovery and development.


Asunto(s)
Conexina 43/biosíntesis , Oligorribonucleótidos Antisentido/administración & dosificación , Oligorribonucleótidos Antisentido/farmacocinética , ARN Interferente Pequeño , Médula Espinal/metabolismo , Animales , Conexina 43/efectos de los fármacos , Regulación hacia Abajo , Transferencia Resonante de Energía de Fluorescencia , Masculino , Oligorribonucleótidos Antisentido/fisiología , Poloxámero , Ratas , Ratas Sprague-Dawley , Médula Espinal/química
12.
Nat Med ; 12(3): 348-53, 2006 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-16491086

RESUMEN

Retroviral and lentiviral vector integration into host-cell chromosomes carries with it a finite chance of causing insertional mutagenesis. This risk has been highlighted by the induction of malignancy in mouse models, and development of lymphoproliferative disease in three individuals with severe combined immunodeficiency-X1 (refs. 2,3). Therefore, a key challenge for clinical therapies based on retroviral vectors is to achieve stable transgene expression while minimizing insertional mutagenesis. Recent in vitro studies have shown that integration-deficient lentiviral vectors can mediate stable transduction. With similar vectors, we now show efficient and sustained transgene expression in vivo in rodent ocular and brain tissues. We also show substantial rescue of clinically relevant rodent models of retinal degeneration. Therefore, the high efficiency of gene transfer and expression mediated by lentiviruses can be harnessed in vivo without a requirement for vector integration. For therapeutic application to postmitotic tissues, this system substantially reduces the risk of insertional mutagenesis.


Asunto(s)
Terapia Genética/métodos , Vectores Genéticos/genética , Lentivirus/genética , Animales , Encéfalo/citología , Proteínas Portadoras , Electrorretinografía , Proteínas del Ojo/metabolismo , Femenino , Proteínas Fluorescentes Verdes/metabolismo , Células HeLa , Humanos , Ratones , Epitelio Pigmentado Ocular/citología , Ratas , Retina/citología , Células Tumorales Cultivadas , Integración Viral/genética , cis-trans-Isomerasas
13.
Proc Natl Acad Sci U S A ; 102(41): 14883-8, 2005 Oct 11.
Artículo en Inglés | MEDLINE | ID: mdl-16195382

RESUMEN

Neuronal expression of growth-associated protein 43 (GAP-43) and the cell adhesion molecule L1 has been correlated with CNS axonal growth and regeneration, but it is not known whether expression of these molecules is necessary for axonal regeneration to occur. We have taken advantage of the fact that Purkinje cells do not express GAP-43 or L1 in adult mammals or regenerate axons into peripheral nerve grafts to test the importance of these molecules for axonal regeneration in vivo. Transgenic mice were generated in which Purkinje cells constitutively express L1 or both L1 and GAP-43 under the Purkinje cell-specific L7 promoter, and regeneration of Purkinje cell axons into peripheral nerve grafts implanted into the cerebellum was examined. Purkinje cells expressing GAP-43 or L1 showed minor enhancement of axonal sprouting. Purkinje cells expressing both GAP-43 and L1 showed more extensive axonal sprouting and axonal growth into the proximal portion of the graft. When a predegenerated nerve graft was implanted into double-transgenic mice, penetration of the graft by Purkinje cell axonal sprouts was strongly enhanced, and some axons grew along the entire intracerebral length of the graft (2.5-3.0 mm) and persisted for several months. The results demonstrate that GAP-43 and L1 coexpressed in Purkinje cells can act synergistically to switch these regeneration-incompetent CNS neurons into a regeneration-competent phenotype and show that coexpression of these molecules is a key regulator of the regenerative ability of intrinsic CNS neurons in vivo.


Asunto(s)
Axones/fisiología , Proteína GAP-43/metabolismo , Molécula L1 de Adhesión de Célula Nerviosa/metabolismo , Células de Purkinje/fisiología , Regeneración/fisiología , Animales , Axones/metabolismo , Inmunohistoquímica , Hibridación in Situ , Ratones , Ratones Transgénicos , Células de Purkinje/metabolismo
14.
Diabetes ; 54(1): 212-9, 2005 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-15616031

RESUMEN

Although autonomic neuropathy is recognized as an independent risk factor for stroke in diabetes, the mechanism by which autonomic nerves are involved in this pathology is unknown. Parasympathetic (cholinergic) nerves of the autonomic nervous system are known to innervate and to cause relaxation of cerebral arteries by releasing nitric oxide (NO); hence, they are called nitrergic nerves. However, the effect of diabetes on nitrergic nerves is unknown. Here, we show that perivascular nitrergic nerves around the cerebral arteries degenerate in two phases in streptozotocin-induced diabetic rats. In the first phase, perivascular nitrergic nerve fibers remain intact while they lose their neuronal NO synthase content. This phase is reversible with insulin treatment. In the second phase, nitrergic cell bodies in the ganglia are lost via apoptosis in an irreversible manner. Throughout the two phases, irreversible thickening of the smooth muscle layer of cerebral arteries is observed. This is the first demonstration of nitrergic degeneration in diabetic cerebral arteries, which could elucidate the link between diabetic autonomic neuropathy and stroke.


Asunto(s)
Arterias Cerebrales/fisiopatología , Diabetes Mellitus Experimental/fisiopatología , Angiopatías Diabéticas/fisiopatología , Neuropatías Diabéticas/fisiopatología , Degeneración Nerviosa/fisiopatología , Óxido Nítrico/fisiología , Accidente Cerebrovascular/fisiopatología , Animales , Glucemia/efectos de los fármacos , Peso Corporal/efectos de los fármacos , Arterias Cerebrales/efectos de los fármacos , Arterias Cerebrales/enzimología , Modelos Animales de Enfermedad , Insulina/uso terapéutico , Masculino , Proteínas de Transporte de Membrana/efectos de los fármacos , Proteínas de Transporte de Membrana/metabolismo , Proteínas del Tejido Nervioso/metabolismo , Óxido Nítrico Sintasa/metabolismo , Óxido Nítrico Sintasa de Tipo I , Ratas , Ratas Wistar , Proteínas de Transporte Vesicular de Acetilcolina
15.
Mol Cell Neurosci ; 26(1): 34-49, 2004 May.
Artículo en Inglés | MEDLINE | ID: mdl-15121177

RESUMEN

Axonal regeneration in the adult CNS is limited by the presence of several inhibitory proteins associated with myelin. Nogo-A, a myelin-associated inhibitor, is responsible for axonal outgrowth inhibition in vivo and in vitro. Here we study the onset and maturation of Nogo-A and Nogo receptor in the entorhino-hippocampal formation of developing and adult mice. We also provide evidence that Nogo-A does not inhibit embryonic hippocampal neurons, in contrast to other cell types such as cerebellar granule cells. Our results also show that Nogo and Nogo receptor mRNA are expressed in the adult by both principal and local-circuit hippocampal neurons, and that after lesion, Nogo-A is also transiently expressed by a subset of reactive astrocytes. Furthermore, we analyzed their regulation after kainic acid (KA) treatment and in response to the transection of the entorhino-hippocampal connection. We found that Nogo-A and Nogo receptor are differentially regulated after kainic acid or perforant pathway lesions. Lastly, we show that the regenerative potential of lesioned entorhino-hippocampal organotypic slice co-cultures is increased after blockage of Nogo-A with two IN-1 blocking antibodies. In conclusion, our results show that Nogo and its receptor might play key roles during development of hippocampal connections and that they are implicated in neuronal plasticity in the adult.


Asunto(s)
Corteza Entorrinal/fisiología , Hipocampo/fisiología , Proteínas de la Mielina/metabolismo , Regeneración Nerviosa/fisiología , Vía Perforante/fisiología , Receptores de Superficie Celular/metabolismo , Animales , Animales Recién Nacidos , Anticuerpos/farmacología , Astrocitos/citología , Astrocitos/metabolismo , Lesiones Encefálicas/inducido químicamente , Lesiones Encefálicas/fisiopatología , Células COS , Corteza Entorrinal/embriología , Corteza Entorrinal/lesiones , Feto , Proteínas Ligadas a GPI , Regulación del Desarrollo de la Expresión Génica/genética , Gliosis/metabolismo , Gliosis/fisiopatología , Conos de Crecimiento/metabolismo , Conos de Crecimiento/ultraestructura , Hipocampo/embriología , Hipocampo/lesiones , Ácido Kaínico , Ratones , Proteínas de la Mielina/antagonistas & inhibidores , Proteínas de la Mielina/genética , Plasticidad Neuronal/fisiología , Proteínas Nogo , Receptor Nogo 1 , Vía Perforante/embriología , Vía Perforante/lesiones , ARN Mensajero/metabolismo , Receptores de Superficie Celular/genética , Receptores de Péptidos/genética , Receptores de Péptidos/metabolismo
16.
BMC Neurosci ; 5: 4, 2004 Jan 30.
Artículo en Inglés | MEDLINE | ID: mdl-15005815

RESUMEN

BACKGROUND: Inactivating genes in vivo is an important technique for establishing their function in the adult nervous system. Unfortunately, conventional knockout mice may suffer from several limitations including embryonic or perinatal lethality and the compensatory regulation of other genes. One approach to producing conditional activation or inactivation of genes involves the use of Cre recombinase to remove loxP-flanked segments of DNA. We have studied the effects of delivering Cre to the hippocampus and neocortex of adult mice by injecting replication-deficient adeno-associated virus (AAV) and lentiviral (LV) vectors into discrete regions of the forebrain. RESULTS: Recombinant AAV-Cre, AAV-GFP (green fluorescent protein) and LV-Cre-EGFP (enhanced GFP) were made with the transgene controlled by the cytomegalovirus promoter. Infecting 293T cells in vitro with AAV-Cre and LV-Cre-EGFP resulted in transduction of most cells as shown by GFP fluorescence and Cre immunoreactivity. Injections of submicrolitre quantities of LV-Cre-EGFP and mixtures of AAV-Cre with AAV-GFP into the neocortex and hippocampus of adult Rosa26 reporter mice resulted in strong Cre and GFP expression in the dentate gyrus and moderate to strong labelling in specific regions of the hippocampus and in the neocortex, mainly in neurons. The pattern of expression of Cre and GFP obtained with AAV and LV vectors was very similar. X-gal staining showed that Cre-mediated recombination had occurred in neurons in the same regions of the brain, starting at 3 days post-injection. No obvious toxic effects of Cre expression were detected even after four weeks post-injection. CONCLUSION: AAV and LV vectors are capable of delivering Cre to neurons in discrete regions of the adult mouse brain and producing recombination.


Asunto(s)
Dependovirus/genética , Técnicas de Transferencia de Gen , Integrasas/administración & dosificación , Integrasas/genética , Lentivirus/genética , Neuronas/metabolismo , Proteínas Virales/administración & dosificación , Proteínas Virales/genética , Animales , Línea Celular , Expresión Génica , Genes Reporteros , Vectores Genéticos/administración & dosificación , Vectores Genéticos/genética , Proteínas Fluorescentes Verdes , Hipocampo/metabolismo , Hipocampo/virología , Integrasas/metabolismo , Proteínas Luminiscentes/biosíntesis , Proteínas Luminiscentes/genética , Ratones , Ratones Transgénicos , Neocórtex/metabolismo , Neocórtex/virología , Neuronas/virología , Proteínas Recombinantes/genética , Proteínas Recombinantes/metabolismo , Recombinación Genética/efectos de los fármacos , Recombinación Genética/genética , Transgenes , Proteínas Virales/metabolismo
17.
Neuroreport ; 14(16): 2085-8, 2003 Nov 14.
Artículo en Inglés | MEDLINE | ID: mdl-14600502

RESUMEN

Following a crush injury of the optic nerve in adult rats, the axons of retinal ganglion cells, stimulated to regenerate by a lens injury and growing within the optic nerve, are associated predominantly with astrocytes: they remain of small diameter (0.1-0.5 microm) and unmyelinated for > or = 2 months after the operation. In contrast, when the optic nerve is cut and a segment of a peripheral nerve is grafted to the ocular stump of the optic nerve, the regenerating retinal axons are associated predominantly with Schwann cells: they are of larger diameter than in the previous experiment and include unmyelinated axons (0.2-2.5 microm) and myelinated axons (mean diameter 2.3 microm). Thus, the grafted peripheral nerve, and presumably its Schwann cells, stimulate enlargement of the regenerating retinal axons leading to partial myelination, whereas the injured optic nerve itself, and presumably its astrocytes, does not. The result points to a marked difference of peripheral (Schwann cells) and central (astrocytes) glia in their effect on regenerating retinal axons.


Asunto(s)
Astrocitos/fisiología , Regeneración Nerviosa/fisiología , Traumatismos del Nervio Óptico/cirugía , Nervios Periféricos/trasplante , Células Ganglionares de la Retina/fisiología , Células de Schwann/trasplante , Animales , Astrocitos/ultraestructura , Axones/fisiología , Axones/ultraestructura , Trasplante de Tejido Encefálico , Femenino , Supervivencia de Injerto/fisiología , Masculino , Microscopía Electrónica , Compresión Nerviosa , Fibras Nerviosas Mielínicas/fisiología , Fibras Nerviosas Mielínicas/ultraestructura , Fibras Nerviosas Amielínicas/fisiología , Fibras Nerviosas Amielínicas/ultraestructura , Nervio Óptico/crecimiento & desarrollo , Nervio Óptico/cirugía , Nervio Óptico/ultraestructura , Traumatismos del Nervio Óptico/patología , Traumatismos del Nervio Óptico/fisiopatología , Nervios Periféricos/fisiología , Nervios Periféricos/ultraestructura , Ratas , Ratas Sprague-Dawley , Células Ganglionares de la Retina/ultraestructura , Células de Schwann/fisiología , Células de Schwann/ultraestructura
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA