Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Nat Commun ; 15(1): 3703, 2024 May 02.
Artículo en Inglés | MEDLINE | ID: mdl-38697988

RESUMEN

Phosphorus plays a crucial role in controlling biological productivity, but geological estimates of phosphate concentrations in the Precambrian ocean, during life's origin and early evolution, vary over several orders of magnitude. While reduced phosphorus species may have served as alternative substrates to phosphate, their bioavailability on the early Earth remains unknown. Here, we reconstruct the phylogenomic record of life on Earth and find that phosphate transporting genes (pnas) evolved in the Paleoarchean (ca. 3.6-3.2 Ga) and are consistent with phosphate concentrations above modern levels ( > 3 µM). The first gene optimized for low phosphate levels (pstS; <1 µM) appeared around the same time or in the Mesoarchean depending on the reconstruction method. Most enzymatic pathways for metabolising reduced phosphorus emerged and expanded across the tree of life later. This includes phosphonate-catabolising CP-lyases, phosphite-oxidising pathways and hypophosphite-oxidising pathways. CP-lyases are particularly abundant in dissolved phosphate concentrations below 0.1 µM. Our results thus indicate at least local regions of declining phosphate levels through the Archean, possibly linked to phosphate-scavenging Fe(III), which may have limited productivity. However, reduced phosphorus species did not become widely used until after the Paleoproterozoic Great Oxidation Event (2.3 Ga), possibly linked to expansion of the biosphere at that time.


Asunto(s)
Fosfatos , Fósforo , Filogenia , Fósforo/metabolismo , Fosfatos/metabolismo , Evolución Molecular , Planeta Tierra , Fósiles
2.
Nat Rev Microbiol ; 22(9): 572-586, 2024 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-38811839

RESUMEN

Two records of Earth history capture the evolution of life and its co-evolving ecosystems with interpretable fidelity: the geobiological and geochemical traces preserved in rocks and the evolutionary histories captured within genomes. The earliest vestiges of life are recognized mostly in isotopic fingerprints of specific microbial metabolisms, whereas fossils and organic biomarkers become important later. Molecular biology provides lineages that can be overlayed on geologic and geochemical records of evolving life. All these data lie within a framework of biospheric evolution that is primarily characterized by the transition from an oxygen-poor to an oxygen-rich world. In this Review, we explore the history of microbial life on Earth and the degree to which it shaped, and was shaped by, fundamental transitions in the chemical properties of the oceans, continents and atmosphere. We examine the diversity and evolution of early metabolic processes, their couplings with biogeochemical cycles and their links to the oxygenation of the early biosphere. We discuss the distinction between the beginnings of metabolisms and their subsequent proliferation and their capacity to shape surface environments on a planetary scale. The evolution of microbial life and its ecological impacts directly mirror the Earth's chemical and physical evolution through cause-and-effect relationships.


Asunto(s)
Evolución Biológica , Planeta Tierra , Ecosistema , Bacterias/genética , Bacterias/metabolismo , Bacterias/clasificación , Oxígeno/metabolismo , Atmósfera/química , Archaea/metabolismo , Archaea/clasificación , Archaea/genética
3.
mSystems ; 9(3): e0006724, 2024 Mar 19.
Artículo en Inglés | MEDLINE | ID: mdl-38380923

RESUMEN

Transposases are mobile genetic elements that move within and between genomes, promoting genomic plasticity in microorganisms. In marine microbial communities, the abundance of transposases increases with depth, but the reasons behind this trend remain unclear. Our analysis of metagenomes from the Tara Oceans and Malaspina Expeditions suggests that a particle-associated lifestyle is the main covariate for the high occurrence of transposases in the deep ocean, and this trend holds true for individual genomes as well as in a community-wide sense. We observed a strong and depth-independent correlation between transposase abundance and the presence of biofilm-associated genes, as well as the prevalence of secretory enzymes. This suggests that mobile genetic elements readily propagate among microbial communities within crowded biofilms. Furthermore, we show that particle association positively correlates with larger genome size, which is in turn associated with higher transposase abundance. Cassette sequences associated with transposons are enriched with genes related to defense mechanisms, which are more highly expressed in the deep sea. Thus, while transposons spread at the expense of their microbial hosts, they also introduce novel genes and potentially benefit the hosts in helping to compete for limited resources. Overall, our results suggest a new understanding of deep ocean particles as highways for gene sharing among defensively oriented microbial genomes.IMPORTANCEGenes can move within and between microbial genomes via mobile genetic elements, which include transposases and transposons. In the oceans, there is a puzzling increase in transposase abundance in microbial genomes as depth increases. To gain insight into this trend, we conducted an extensive analysis of marine microbial metagenomes and metatranscriptomes. We found a significant correlation between transposase abundance and a particle-associated lifestyle among marine microbes at both the metagenome and genome-resolved levels. We also observed a link between transposase abundance and genes related to defense mechanisms. These results suggest that as microbes become densely packed into crowded particles, mobile genes are more likely to spread and carry genetic material that provides a competitive advantage in crowded habitats. This may enable deep sea microbes to effectively compete in such environments.


Asunto(s)
Microbiota , Transposasas , Transposasas/genética , Océanos y Mares , Metagenoma/genética , Microbiota/genética
4.
ISME J ; 18(1)2024 Jan 08.
Artículo en Inglés | MEDLINE | ID: mdl-38366040

RESUMEN

Deep-sea hydrothermal vent geochemistry shapes the foundation of the microbial food web by fueling chemolithoautotrophic microbial activity. Microbial eukaryotes (or protists) play a critical role in hydrothermal vent food webs as consumers and hosts of symbiotic bacteria, and as a nutritional source to higher trophic levels. We measured microbial eukaryotic cell abundance and predation pressure in low-temperature diffuse hydrothermal fluids at the Von Damm and Piccard vent fields along the Mid-Cayman Rise in the Western Caribbean Sea. We present findings from experiments performed under in situ pressure that show cell abundances and grazing rates higher than those done at 1 atmosphere (shipboard ambient pressure); this trend was attributed to the impact of depressurization on cell integrity. A relationship between the protistan grazing rate, prey cell abundance, and temperature of end-member hydrothermal vent fluid was observed at both vent fields, regardless of experimental approach. Our results show substantial protistan biomass at hydrothermally fueled microbial food webs, and when coupled with improved grazing estimates, suggest an important contribution of grazers to the local carbon export and supply of nutrient resources to the deep ocean.


Asunto(s)
Respiraderos Hidrotermales , Animales , Biomasa , Respiraderos Hidrotermales/microbiología , Conducta Predatoria , Filogenia , Bacterias/genética
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA