Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 46
Filtrar
1.
JAMA Surg ; 2024 Jul 03.
Artículo en Inglés | MEDLINE | ID: mdl-38959017

RESUMEN

Importance: Roux-en-Y gastric bypass (RYGB) is associated with reduced cardiovascular (CV) risk factors, morbidity, and mortality. Whether these effects are specifically induced by the surgical procedure or the weight loss is unclear. Objective: To compare 6-week changes in CV risk factors in patients with obesity undergoing matching caloric restriction and weight loss by RYGB or a very low-energy diet (VLED). Design, Setting, and Participants: This nonrandomized controlled study (Impact of Body Weight, Low Calorie Diet, and Gastric Bypass on Drug Bioavailability, Cardiovascular Risk Factors, and Metabolic Biomarkers [COCKTAIL]) was conducted at a tertiary care obesity center in Norway. Participants were individuals with severe obesity preparing for RYGB or a VLED. Recruitment began February 26, 2015; the first patient visit was on March 18, 2015, and the last patient visit (9-week follow-up) was on August 9, 2017. Data were analyzed from April 30, 2021, through June 29, 2023. Interventions: VLED alone for 6 weeks or VLED for 6 weeks after RYGB; both interventions were preceded by 3-week LED. Main Outcomes and Measures: Between-group comparisons of 6-week changes in CV risk factors. Results: Among 78 patients included in the analyses, the mean (SD) age was 47.5 (9.7) years; 51 (65%) were women, and 27 (35%) were men. Except for a slightly higher mean (SD) body mass index of 44.5 (6.2) in the RYGB group (n = 41) vs 41.9 (5.4) in the VLED group (n = 37), baseline demographic and clinical characteristics were similar between groups. Major atherogenic blood lipids (low-density lipoprotein cholesterol, non-high-density lipoprotein cholesterol, apolipoprotein B, lipoprotein[a]) were reduced after RYGB in comparison with VLED despite a similar fat mass loss. Mean between-group differences were -17.7 mg/dL (95% CI, -27.9 to -7.5), -17.4 mg/dL (95% CI, -29.8 to -5.0) mg/dL, -9.94 mg/dL (95% CI, -15.75 to -4.14), and geometric mean ratio was 0.55 U/L (95% CI, 0.42 to 0.72), respectively. Changes in glycemic control and blood pressure were similar between groups. Conclusions and Relevance: This study found that clinically meaningful reductions in major atherogenic blood lipids were demonstrated after RYGB, indicating that RYGB may reduce CV risk independent of weight loss. Trial Registration: ClinicalTrials.gov Identifier: NCT02386917.

2.
Clin Pharmacol Ther ; 2024 May 21.
Artículo en Inglés | MEDLINE | ID: mdl-38771070

RESUMEN

This article summarizes the lessons learned from the COCKTAIL study: an open, three-armed, single-center study including patients with obesity scheduled for treatment with Roux-en-Y gastric bypass (RYGB) or nonsurgical calorie restriction, and a normal- to overweight control group. The clinical implications of the results from multiple peer-reviewed articles describing the effects of RYGB, severe caloric restriction, weight loss, and type 2 diabetes on the in vivo activity and protein expression of drug-metabolizing enzymes (cytochrome P450 (CYP) 1A2, 2C9, 2C19, and 3A) and transporters (DMETs; organic anion-transporting polypeptide (OATP) 1B1 and P-glycoprotein (P-gp)) are discussed in the perspective of three clinically relevant questions: (1) How should clinicians get the dose right in patients after RYGB? (2) Will drug disposition in patients with obesity be normalized after successful weight loss? (3) Are dose adjustments needed according to obesity and diabetes status? Overall, RYGB seems to have a lower impact on drug disposition than previously assumed, but clinicians should pay close attention to drugs with a narrow therapeutic range or where a high maximum drug concentration may be problematic. Whether obesity-related alterations of DMETs normalize with substantial weight loss depends on the DMET in question. Obesity and diabetes downregulate the in vivo activity of CYP2C19 and CYP3A (only obesity) but whether substrate drugs should be dose adjusted is also dependent on other factors that influence clearance, that is, liver blood flow and protein binding. Finally, we recommend frequent and individualized follow-up due to high inter- and intraindividual variability in these patients, particularly following RYGB.

3.
Mol Ther Nucleic Acids ; 35(1): 102133, 2024 Mar 12.
Artículo en Inglés | MEDLINE | ID: mdl-38419941

RESUMEN

Pharmacokinetics (PK) of antisense oligonucleotides (ASOs) is characterized by rapid distribution from plasma to tissue and slow terminal plasma elimination driven by re-distribution from tissue. Quantitative understanding of tissue PK and RNA knockdown for various ASO chemistries, conjugations, and administration routes is critical for successful drug discovery. Here, we report concentration-time and RNA knockdown profiles for a gapmer ASO with locked nucleic acid ribose chemistry in mouse liver, kidney, heart, and lung after subcutaneous and intratracheal administration. Additionally, the same ASO with liver targeting conjugation (galactosamine-N-acetyl) is evaluated for subcutaneous administration. Data indicate that exposure and knockdown differ between tissues and strongly depend on administration route and conjugation. In a second study, we show that tissue PK is similar between the three different ribose chemistries locked nucleic acid, constrained ethyl and 2'-O-methoxyethyl, both after subcutaneous and intratracheal administration. Further, we show that the half-life in mouse liver may vary with ASO sequence. Finally, we report less than dose-proportional increase in liver concentration in the dose range of 3-30 µmol/kg. Overall, our studies contribute pivotal data to support design and interpretation of ASO in vivo studies, thereby increasing the probability of delivering novel ASO therapies to patients.

4.
Drug Metab Dispos ; 52(3): 242-251, 2024 Feb 14.
Artículo en Inglés | MEDLINE | ID: mdl-38176735

RESUMEN

Detailed structural characterization of small molecule metabolites is desirable during all stages of drug development, and often relies on the synthesis of metabolite standards. However, introducing structural changes into already complex, highly functionalized small molecules both regio- and stereo-selectively can be challenging using purely chemical approaches, introducing delays into the drug pipeline. An alternative is to use the cytochrome P450 enzymes (P450s) that produce the metabolites in vivo, taking advantage of the enzyme's inherently chiral active site to achieve regio- and stereoselectivity. Importantly, biotransformations are more sustainable: they proceed under mild conditions and avoid environmentally damaging solvents and transition metal catalysts. Recombinant enzymes avoid the need to use animal liver microsomes. However, native enzymes must be stabilized to work for extended periods or at elevated temperatures, and stabilizing mutations can alter catalytic activity. Here we assessed a set of novel, thermostable P450s in bacterial membranes, a format analogous to liver microsomes, for their ability to metabolize drugs through various pathways and compared them to human liver microsomes. Collectively, the thermostable P450s could replicate the metabolic pathways seen with human liver microsomes, including bioactivation to protein-reactive intermediates. Novel metabolites were found, suggesting the possibility of obtaining metabolites not produced by human or rodent liver microsomes. Importantly, no alteration in assay conditions from standard protocols for microsomal incubations was necessary. Thus, such bacterial membranes represent an analogous metabolite generation system to liver microsomes in terms of metabolites produced and ease of use, but which provides access to more diversity of metabolite structures. SIGNIFICANCE STATEMENT: In drug development it is often chemically challenging, to synthesize authentic metabolites of drug candidates for structural identification and evaluation of activity and safety. Biosynthesis using microsomes or recombinant human enzymes is confounded by the instability of the enzymes. Here we show that thermostable ancestral cytochrome P450 enzymes derived from P450 families responsible for human drug metabolism offer advantages over the native human forms in being more robust and over microbial enzymes in faithfully reflecting human drug metabolism.


Asunto(s)
Sistema Enzimático del Citocromo P-450 , Microsomas Hepáticos , Animales , Humanos , Microsomas Hepáticos/metabolismo , Biocatálisis , Sistema Enzimático del Citocromo P-450/metabolismo , Biotransformación , Redes y Vías Metabólicas
5.
Clin Pharmacokinet ; 63(1): 109-120, 2024 01.
Artículo en Inglés | MEDLINE | ID: mdl-37993699

RESUMEN

BACKGROUND AND OBJECTIVE: Several drugs on the market are substrates for P-glycoprotein (P-gp), an efflux transporter highly expressed in barrier tissues such as the intestine. Body weight, weight loss, and a Roux-en-Y gastric bypass (RYGB) may influence P-gp expression and activity, leading to variability in the drug response. The objective of this study was therefore to investigate digoxin pharmacokinetics as a measure of the P-gp phenotype in patients with obesity before and after weight loss induced by an RYGB or a strict diet and in normal weight individuals. METHODS: This study included patients with severe obesity preparing for an RYGB (n = 40) or diet-induced weight loss (n = 40) and mainly normal weight individuals scheduled for a cholecystectomy (n = 18). Both weight loss groups underwent a 3-week low-energy diet (<1200 kcal/day) followed by an additional 6 weeks of <800 kcal/day induced by an RYGB (performed at week 3) or a very-low-energy diet. Follow-up time was 2 years, with four digoxin pharmacokinetic investigations at weeks 0, 3, and 9, and year 2. Hepatic and jejunal P-gp levels were determined in biopsies obtained from the patients undergoing surgery. RESULTS: The RYGB group and the diet group had a comparable weight loss in the first 9 weeks (13 ± 2.3% and 11 ± 3.6%, respectively). During this period, we observed a minor increase (16%) in the digoxin area under the concentration-time curve from zero to infinity in both groups: RYGB: 2.7 µg h/L [95% confidence interval (CI) 0.67, 4.7], diet: 2.5 µg h/L [95% CI 0.49, 4.4]. In the RYGB group, we also observed that the time to reach maximum concentration decreased after surgery: from 1.0 ± 0.33 hours at week 3 to 0.77 ± 0.08 hours at week 9 (-0.26 hours [95% CI -0.47, -0.05]), corresponding to a 25% reduction. Area under the concentration-time curve from zero to infinity did not change long term (week 0 to year 2) in either the RYGB (1.1 µg h/L [-0.94, 3.2]) or the diet group (0.94 µg h/L [-1.2, 3.0]), despite a considerable difference in weight loss from baseline (RYGB: 30 ± 7%, diet: 3 ± 6%). At baseline, the area under the concentration-time curve from zero to infinity was -5.5 µg h/L [95% CI -8.5, -2.5] (-26%) lower in patients with obesity (RYGB plus diet) than in normal weight individuals scheduled for a cholecystectomy. Further, patients undergoing an RYGB had a 0.05 fmol/µg [95% CI 0.00, 0.10] (29%) higher hepatic P-gp level than the normal weight individuals. CONCLUSIONS: Changes in digoxin pharmacokinetics following weight loss induced by a pre-operative low-energy diet and an RYGB or a strict diet (a low-energy diet plus a very-low-energy diet) were minor and unlikely to be clinically relevant. The lower systemic exposure of digoxin in patients with obesity suggests that these patients may have increased biliary excretion of digoxin possibly owing to a higher expression of P-gp in the liver.


Asunto(s)
Derivación Gástrica , Obesidad Mórbida , Humanos , Derivación Gástrica/efectos adversos , Digoxina , Obesidad/cirugía , Obesidad/metabolismo , Obesidad Mórbida/cirugía , Dieta , Pérdida de Peso/fisiología , Miembro 1 de la Subfamilia B de Casetes de Unión a ATP
6.
Clin Pharmacokinet ; 62(5): 725-735, 2023 05.
Artículo en Inglés | MEDLINE | ID: mdl-36988826

RESUMEN

INTRODUCTION: Rosuvastatin pharmacokinetics is mainly dependent on the activity of hepatic uptake transporter OATP1B1. In this study, we aimed to investigate and disentangle the effect of Roux-en-Y gastric bypass (RYGB) and weight loss on oral clearance (CL/F) of rosuvastatin as a measure of OATP1B1-activity. METHODS: Patients with severe obesity preparing for RYGB (n = 40) or diet-induced weight loss (n = 40) were included and followed for 2 years, with four 24-hour pharmacokinetic investigations. Both groups underwent a 3-week low-energy diet (LED; < 1200 kcal/day), followed by RYGB or a 6-week very-low-energy diet (VLED; < 800 kcal/day). RESULTS: A total of 80 patients were included in the RYGB group (40 patients) and diet-group (40 patients). The weight loss was similar between the groups following LED and RYGB. The LED induced a similar (mean [95% CI]) decrease in CL/F in both intervention groups (RYGB: 16% [0, 31], diet: 23% [8, 38]), but neither induced VLED resulted in any further changes in CL/F. At Year 2, CL/F had increased by 21% from baseline in the RYGB group, while it was unaltered in the diet group. Patients expressing the reduced function SLCO1B1 variants (c.521TC/CC) showed similar changes in CL/F over time compared with patients expressing the wild-type variant. CONCLUSIONS: Neither body weight, weight loss nor RYGB per se seem to affect OATP1B1 activity to a clinically relevant degree. Overall, the observed changes in rosuvastatin pharmacokinetics were minor, and unlikely to be of clinical relevance.


Asunto(s)
Derivación Gástrica , Obesidad Mórbida , Humanos , Derivación Gástrica/métodos , Rosuvastatina Cálcica , Dieta , Pérdida de Peso , Transportador 1 de Anión Orgánico Específico del Hígado/genética
7.
Clin Transl Sci ; 15(11): 2685-2696, 2022 11.
Artículo en Inglés | MEDLINE | ID: mdl-36037309

RESUMEN

Previous studies have not accounted for the close link between type 2 diabetes mellitus (T2DM) and obesity when investigating the impact of T2DM on cytochrome P450 (CYP) activities. The aim was to investigate the effect of T2DM on in vivo activities and protein expressions of CYP2C19, CYP3A, CYP1A2, and CYP2C9 in patients with obesity. A total of 99 patients from the COCKTAIL study (NCT02386917) were included in this cross-sectional analysis; 29 with T2DM and obesity (T2DM-obesity), 53 with obesity without T2DM (obesity), and 17 controls without T2DM and obesity (controls). CYP activities were assessed after the administration of a cocktail of probe drugs including omeprazole (CYP2C19), midazolam (CYP3A), caffeine (CYP1A2), and losartan (CYP2C9). Jejunal and liver biopsies were also obtained to determine protein concentrations of the respective CYPs. CYP2C19 activity and jejunal CYP2C19 concentration were 63% (-0.39 [95% CI: -0.82, -0.09]) and 40% (-0.09 fmol/µg protein [95% CI: -0.18, -0.003]) lower in T2DM-obesity compared with the obesity group, respectively. By contrast, there were no differences in the in vivo activities and protein concentrations of CYP3A, CYP1A2, and CYP2C9. Multivariable regression analyses also indicated that T2DM was associated with interindividual variability in CYP2C19 activity, but not CYP3A, CYP1A2, and CYP2C9 activities. The findings indicate that T2DM has a significant downregulating impact on CYP2C19 activity, but not on CYP3A, CYP1A2, and CYP2C9 activities and protein concentrations in patients with obesity. Hence, the effect of T2DM seems to be isoform-specific.


Asunto(s)
Citocromo P-450 CYP1A2 , Diabetes Mellitus Tipo 2 , Humanos , Estudios Transversales , Citocromo P-450 CYP1A2/metabolismo , Citocromo P-450 CYP2C19/genética , Citocromo P-450 CYP2C19/metabolismo , Citocromo P-450 CYP2C9/metabolismo , Citocromo P-450 CYP3A/metabolismo , Sistema Enzimático del Citocromo P-450/metabolismo , Interacciones Farmacológicas , Obesidad , Estudios Clínicos como Asunto
8.
Anal Chem ; 94(29): 10549-10556, 2022 07 26.
Artículo en Inglés | MEDLINE | ID: mdl-35830231

RESUMEN

Antisense oligonucleotide (ASO)-based therapeutics hold great potential for the treatment of a variety of diseases. Therefore, a better understanding of cellular delivery, uptake, and trafficking mechanisms of ASOs is highly important for early-stage drug discovery. In particular, understanding the biodistribution and quantifying the abundance of ASOs at the subcellular level are needed to fully characterize their activity. Here, we used a combination of electron microscopy and NanoSIMS to assess the subcellular concentrations of a 34S-labeled GalNAc-ASO and a naked ASO in the organelles of primary human hepatocytes. We first cross-validated the method by including a 127I-labeled ASO, finding that the absolute concentration of the lysosomal ASO using two independent labeling strategies gave matching results, demonstrating the strength of our approach. This work also describes the preparation of external standards for absolute quantification by NanoSIMS. For both the 34S and 127I approaches used for our quantification methodology, we established the limit of detection (5 and 2 µM, respectively) and the lower limit of quantification (14 and 5 µM, respectively).


Asunto(s)
Yodo , Oligonucleótidos , Hepatocitos/metabolismo , Humanos , Oligonucleótidos Antisentido/metabolismo , Distribución Tisular
9.
J Biol Chem ; 298(7): 102096, 2022 07.
Artículo en Inglés | MEDLINE | ID: mdl-35660019

RESUMEN

Proprotein convertase subtilisin/kexin type 9 (PCSK9) is involved in the degradation of the low-density lipoprotein receptor. PCSK9 also targets proteins involved in lipid metabolism (very low-density lipoprotein receptor), immunity (major histocompatibility complex I), and viral infection (cluster of differentiation 81). Recent studies have also indicated that PCSK9 loss-of-function mutations are associated with an increased incidence of diabetes; however, the expression and function of PCSK9 in insulin-producing pancreatic beta cells remain unclear. Here, we studied PCSK9 regulation and function by performing loss- and gain-of-function experiments in the human beta cell line EndoC-ßH1. We demonstrate that PCSK9 is expressed and secreted by EndoC-ßH1 cells. We also found that PCSK9 expression is regulated by cholesterol and sterol regulatory element-binding protein transcription factors, as previously demonstrated in other cell types such as hepatocytes. Importantly, we show that PCSK9 knockdown using siRNA results in deregulation of various elements of the transcriptome, proteome, and secretome, and increases insulin secretion. We also observed that PCSK9 decreases low-density lipoprotein receptor and very low-density lipoprotein receptor levels via an extracellular signaling mechanism involving exogenous PCSK9, as well as levels of cluster of differentiation 36, a fatty acid transporter, through an intracellular signaling mechanism. Finally, we found that PCSK9 regulates the cell surface expression of PDL1 and HLA-ABC, proteins involved in cell-lymphocyte interaction, also via an intracellular mechanism. Collectively, these results highlight PCSK9 as a regulator of multiple cell surface receptors in pancreatic beta cells.


Asunto(s)
Células Secretoras de Insulina , Proteínas de la Membrana , Proproteína Convertasa 9 , Antígenos CD36/metabolismo , Línea Celular , Mutación con Ganancia de Función , Humanos , Células Secretoras de Insulina/metabolismo , Lipoproteínas VLDL/metabolismo , Mutación con Pérdida de Función , Proteínas de la Membrana/metabolismo , Proproteína Convertasa 9/metabolismo , Receptores de LDL/metabolismo
10.
Eur J Clin Pharmacol ; 78(8): 1289-1299, 2022 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-35648149

RESUMEN

PURPOSE: Variability in cytochrome P450 3A4 (CYP3A4) metabolism is mainly caused by non-genetic factors, hence providing a need for accurate phenotype biomarkers. Although 4ß-hydroxycholesterol (4ßOHC) is a promising endogenous CYP3A4 biomarker, additional investigations are required to evaluate its ability to predict CYP3A4 activity. This study investigated the correlations between 4ßOHC concentrations and hepatic and intestinal CYP3A4 protein expression and ex vivo microsomal activity in paired liver and jejunum samples, as well as in vivo CYP3A4 phenotyping (midazolam) in patients with a wide body weight range. METHODS: The patients (n = 96; 78 with obesity and 18 normal or overweight individuals) were included from the COCKTAIL-study (NCT02386917). Plasma samples for analysis of 4ßOHC and midazolam concentrations, and liver (n = 56) and jejunal (n = 38) biopsies were obtained. The biopsies for determination of CYP3A4 protein concentration and microsomal activity were obtained during gastric bypass or cholecystectomy. In vivo CYP3A4 phenotyping was performed using semi-simultaneous oral (1.5 mg) and intravenous (1.0 mg) midazolam. RESULTS: 4ßOHC concentrations were positively correlated with hepatic microsomal CYP3A4 activity (ρ = 0.53, p < 0.001), and hepatic CYP3A4 concentrations (ρ = 0.30, p = 0.027), but not with intestinal CYP3A4 concentrations (ρ = 0.18, p = 0.28) or intestinal microsomal CYP3A4 activity (ρ = 0.15, p = 0.53). 4ßOHC concentrations correlated weakly with midazolam absolute bioavailability (ρ = - 0.23, p = 0.027) and apparent oral clearance (ρ = 0.28, p = 0.008), but not with systemic clearance (ρ = - 0.03, p = 0.81). CONCLUSION: These findings suggest that 4ßOHC concentrations reflect hepatic, but not intestinal, CYP3A4 activity. Further studies should investigate the potential value of 4ßOHC as an endogenous biomarker for individual dose requirements of intravenously administered CYP3A4 substrate drugs. TRIAL REGISTRATION: Clinical. TRIALS: gov identifier: NCT02386917.


Asunto(s)
Citocromo P-450 CYP3A , Midazolam , Biomarcadores , Peso Corporal , Citocromo P-450 CYP3A/genética , Citocromo P-450 CYP3A/metabolismo , Humanos , Hidroxicolesteroles , Hígado/metabolismo
11.
Mol Biol Evol ; 39(6)2022 06 02.
Artículo en Inglés | MEDLINE | ID: mdl-35639613

RESUMEN

The cytochrome P450 family 1 enzymes (CYP1s) are a diverse family of hemoprotein monooxygenases, which metabolize many xenobiotics including numerous environmental carcinogens. However, their historical function and evolution remain largely unstudied. Here we investigate CYP1 evolution via the reconstruction and characterization of the vertebrate CYP1 ancestors. Younger ancestors and extant forms generally demonstrated higher activity toward typical CYP1 xenobiotic and steroid substrates than older ancestors, suggesting significant diversification away from the original CYP1 function. Caffeine metabolism appears to be a recently evolved trait of the CYP1A subfamily, observed in the mammalian CYP1A lineage, and may parallel the recent evolution of caffeine synthesis in multiple separate plant species. Likewise, the aryl hydrocarbon receptor agonist, 6-formylindolo[3,2-b]carbazole (FICZ) was metabolized to a greater extent by certain younger ancestors and extant forms, suggesting that activity toward FICZ increased in specific CYP1 evolutionary branches, a process that may have occurred in parallel to the exploitation of land where UV-exposure was higher than in aquatic environments. As observed with previous reconstructions of P450 enzymes, thermostability correlated with evolutionary age; the oldest ancestor was up to 35 °C more thermostable than the extant forms, with a 10T50 (temperature at which 50% of the hemoprotein remains intact after 10 min) of 71 °C. This robustness may have facilitated evolutionary diversification of the CYP1s by buffering the destabilizing effects of mutations that conferred novel functions, a phenomenon which may also be useful in exploiting the catalytic versatility of these ancestral enzymes for commercial application as biocatalysts.


Asunto(s)
Cafeína , Xenobióticos , Animales , Citocromo P-450 CYP1A1/genética , Citocromo P-450 CYP1A1/metabolismo , Sistema Enzimático del Citocromo P-450/genética , Mamíferos/metabolismo , Vertebrados/genética , Vertebrados/metabolismo
12.
Mol Ther Nucleic Acids ; 28: 500-513, 2022 Jun 14.
Artículo en Inglés | MEDLINE | ID: mdl-35592498

RESUMEN

Fibroblast growth factor 21 (FGF21) is a promising therapeutic agent for treatment of type 2 diabetes (T2D) and non-alcoholic steatohepatitis (NASH). We show that therapeutic levels of FGF21 were achieved following subcutaneous (s.c.) administration of mRNA encoding human FGF21 proteins. The efficacy of mRNA was assessed following 2-weeks repeated s.c. dosing in diet-induced obese (DIO), mice which resulted in marked decreases in body weight, plasma insulin levels, and hepatic steatosis. Pharmacokinetic/pharmacodynamic (PK/PD) modelling of several studies in both lean and DIO mice showed that mRNA encoding human proteins provided improved therapeutic coverage over recombinant dosed proteins in vivo. This study is the first example of s.c. mRNA therapy showing pre-clinical efficacy in a disease-relevant model, thus, showing the potential for this modality in the treatment of chronic diseases, including T2D and NASH.

13.
Br J Clin Pharmacol ; 88(9): 4121-4133, 2022 09.
Artículo en Inglés | MEDLINE | ID: mdl-35404513

RESUMEN

AIM: Roux-en-Y gastric bypass (RYGB) may influence drug disposition due to surgery-induced gastrointestinal alterations and/or subsequent weight loss. The objective was to compare short- and long-term effects of RYGB and diet on the metabolic ratios of paraxanthine/caffeine (cytochrome P450 [CYP] 1A2 activity), 5-hydroxyomeprazole/omeprazole (CYP2C19 activity) and losartan/losartan carboxylic acid (CYP2C9 activity), and cross-sectionally compare these CYP-activities with normal-to-overweight controls. METHODS: This trial included patients with severe obesity preparing for RYGB (n = 40) or diet-induced (n = 41) weight loss, and controls (n = 18). Both weight loss groups underwent a 3-week low-energy diet (<1200 kcal/day, weeks 0-3) followed by a 6-week very-low-energy diet or RYGB (both <800 kcal/day, weeks 3-9). Follow-up time was 2 years, with four pharmacokinetic investigations. RESULTS: Mean ± SD weight loss from baseline was similar in the RYGB-group (13 ± 2.4%) and the diet group (10.5 ± 3.9%) at week 9, but differed at year 2 (RYGB -30 ± 6.9%, diet -3.1 ± 6.3%). From weeks 0 to 3, mean (95% confidence interval [CI]) CYP2C19 activity similarly increased in both groups (RYGB 43% [16, 55], diet 48% [22, 60]). Mean CYP2C19 activity increased by 30% (2.6, 43) after RYGB (weeks 3-9), but not in the diet-group (between-group difference -0.30 [-0.63, 0.03]). CYP2C19 activity remained elevated in the RYGB group at year 2. Baseline CYP2C19 activity was 2.7-fold higher in controls compared with patients with obesity, whereas no difference was observed in CYP1A2 and CYP2C9 activities. CONCLUSION: Our findings suggest that CYP2C19 activity is lower in patients with obesity and increases following weight loss. This may be clinically relevant for drug dosing. No clinically significant effect on CYP1A2 and CYP2C9 activities was observed.


Asunto(s)
Derivación Gástrica , Obesidad Mórbida , Restricción Calórica , Citocromo P-450 CYP1A2/metabolismo , Citocromo P-450 CYP2C19/genética , Citocromo P-450 CYP2C9 , Humanos , Obesidad/cirugía , Obesidad Mórbida/cirugía , Pérdida de Peso
14.
Mol Cell Proteomics ; 21(5): 100229, 2022 05.
Artículo en Inglés | MEDLINE | ID: mdl-35378291

RESUMEN

Early diabetes research is hampered by limited availability, variable quality, and instability of human pancreatic islets in culture. Little is known about the human ß cell secretome, and recent studies question translatability of rodent ß cell secretory profiles. Here, we verify representativeness of EndoC-ßH1, one of the most widely used human ß cell lines, as a translational human ß cell model based on omics and characterize the EndoC-ßH1 secretome. We profiled EndoC-ßH1 cells using RNA-seq, data-independent acquisition, and tandem mass tag proteomics of cell lysate. Omics profiles of EndoC-ßH1 cells were compared to human ß cells and insulinomas. Secretome composition was assessed by data-independent acquisition proteomics. Agreement between EndoC-ßH1 cells and primary adult human ß cells was ∼90% for global omics profiles as well as for ß cell markers, transcription factors, and enzymes. Discrepancies in expression were due to elevated proliferation rate of EndoC-ßH1 cells compared to adult ß cells. Consistently, similarity was slightly higher with benign nonmetastatic insulinomas. EndoC-ßH1 secreted 783 proteins in untreated baseline state and 3135 proteins when stressed with nontargeting control siRNA, including known ß cell hormones INS, IAPP, and IGF2. Further, EndoC-ßH1 secreted proteins known to generate bioactive peptides such as granins and enzymes required for production of bioactive peptides. EndoC-ßH1 secretome contained an unexpectedly high proportion of predicted extracellular vesicle proteins. We believe that secretion of extracellular vesicles and bioactive peptides warrant further investigation with specialized proteomics workflows in future studies.


Asunto(s)
Células Secretoras de Insulina , Insulinoma , Neoplasias Pancreáticas , Línea Celular , Humanos , Insulina/metabolismo , Células Secretoras de Insulina/metabolismo , Insulinoma/metabolismo , Neoplasias Pancreáticas/metabolismo , Proteoma/metabolismo , Secretoma , Transcriptoma
15.
Commun Biol ; 5(1): 185, 2022 03 01.
Artículo en Inglés | MEDLINE | ID: mdl-35233031

RESUMEN

The therapeutic and research potentials of oligonucleotides (ONs) have been hampered in part by their inability to effectively escape endosomal compartments to reach their cytosolic and nuclear targets. Splice-switching ONs (SSOs) can be used with endosomolytic small molecule compounds to increase functional delivery. So far, development of these compounds has been hindered by a lack of high-resolution methods that can correlate SSO trafficking with SSO activity. Here we present in-depth characterization of two novel endosomolytic compounds by using a combination of microscopic and functional assays with high spatiotemporal resolution. This system allows the visualization of SSO trafficking, evaluation of endosomal membrane rupture, and quantitates SSO functional activity on a protein level in the presence of endosomolytic compounds. We confirm that the leakage of SSO into the cytosol occurs in parallel with the physical engorgement of LAMP1-positive late endosomes and lysosomes. We conclude that the new compounds interfere with SSO trafficking to the LAMP1-positive endosomal compartments while inducing endosomal membrane rupture and concurrent ON escape into the cytosol. The efficacy of these compounds advocates their use as novel, potent, and quick-acting transfection reagents for antisense ONs.


Asunto(s)
Oligonucleótidos Antisentido , Oligonucleótidos , Endosomas/metabolismo , Membranas Intracelulares , Lisosomas , Oligonucleótidos/metabolismo , Oligonucleótidos Antisentido/genética , Oligonucleótidos Antisentido/farmacología
16.
Pharmaceutics ; 14(2)2022 Feb 21.
Artículo en Inglés | MEDLINE | ID: mdl-35214195

RESUMEN

The delivery of antisense oligonucleotides (ASOs) to specific cell types via targeted endocytosis is challenging due to the low cell surface expression of target receptors and inefficient escape of ASOs from the endosomal pathway. Conjugating ASOs to glucagon-like peptide 1 (GLP1) leads to efficient target knockdown, specifically in pancreatic ß-cells. It is presumed that ASOs dissociate from GLP1 intracellularly to enable an ASO interaction with its target RNA. It is unknown where or when this happens following GLP1-ASO binding to GLP1R and endocytosis. Here, we use correlative nanoscale secondary ion mass spectroscopy (NanoSIMS) and transmission electron microscopy to explore GLP1-ASO subcellular trafficking in GLP1R overexpressing HEK293 cells. We isotopically label both eGLP1 and ASO, which do not affect the eGLP1-ASO conjugate function. We found that the eGLP1 peptide and ASO are not detected at the same level in the same endosomes, within 30 min of GLP1R-HEK293 cell exposure to eGLP1-ASO. When we utilized different linker chemistry to stabilize the GLP1-ASO conjugate, we observed more ASO located with GLP1 compared to cell incubation with the less stable conjugate. Overall, our work suggests that the ASO separates from GLP1 relatively early in the endocytic pathway, and that linker chemistry might impact the GLP1-ASO function.

17.
Clin Transl Sci ; 15(1): 221-233, 2022 01.
Artículo en Inglés | MEDLINE | ID: mdl-34435745

RESUMEN

It remains uncertain whether pharmacokinetic changes following Roux-en-Y gastric bypass (RYGB) can be attributed to surgery-induced gastrointestinal alterations per se and/or the subsequent weight loss. The aim was to compare short- and long-term effects of RYGB and calorie restriction on CYP3A-activity, and cross-sectionally compare CYP3A-activity with normal weight to overweight controls using midazolam as probe drug. This three-armed controlled trial included patients with severe obesity preparing for RYGB (n = 41) or diet-induced (n = 41) weight-loss, and controls (n = 18). Both weight-loss groups underwent a 3-week low-energy-diet (<1200 kcal/day) followed by a 6-week very-low-energy-diet or RYGB (both <800 kcal/day). Patients were followed for 2 years, with four pharmacokinetic investigations using semisimultaneous oral and intravenous dosing to determine changes in midazolam absolute bioavailability and clearance, within and between groups. The RYGB and diet groups showed similar weight-loss at week 9 (13 ± 2.4% vs. 11 ± 3.6%), but differed substantially after 2 years (-30 ± 7.0% vs. -3.1 ± 6.3%). At baseline, mean absolute bioavailability and clearance of midazolam were similar in the RYGB and diet groups, but higher compared with controls. On average, absolute bioavailability was unaltered at week 9, but decreased by 40 ± 7.5% in the RYGB group and 32 ± 6.1% in the diet group at year 2 compared with baseline, with no between-group difference. No difference in clearance was observed over time, nor between groups. In conclusion, neither RYGB per se nor weight loss impacted absolute bioavailability or clearance of midazolam short term. Long term, absolute bioavailability was similarly decreased in both groups despite different weight loss, suggesting that the recovered CYP3A-activity is not only dependent on weight-loss through RYGB.


Asunto(s)
Restricción Calórica , Citocromo P-450 CYP3A/metabolismo , Derivación Gástrica , Pérdida de Peso/fisiología , Adulto , Femenino , Humanos , Hipnóticos y Sedantes/farmacocinética , Masculino , Midazolam/farmacocinética , Persona de Mediana Edad
18.
J Cell Biol ; 221(2)2022 02 07.
Artículo en Inglés | MEDLINE | ID: mdl-34882187

RESUMEN

Delivery of exogenous mRNA using lipid nanoparticles (LNPs) is a promising strategy for therapeutics. However, a bottleneck remains in the poor understanding of the parameters that correlate with endosomal escape versus cytotoxicity. To address this problem, we compared the endosomal distribution of six LNP-mRNA formulations of diverse chemical composition and efficacy, similar to those used in mRNA-based vaccines, in primary human adipocytes, fibroblasts, and HeLa cells. Surprisingly, we found that total uptake is not a sufficient predictor of delivery, and different LNPs vary considerably in endosomal distributions. Prolonged uptake impaired endosomal acidification, a sign of cytotoxicity, and caused mRNA to accumulate in compartments defective in cargo transport and unproductive for delivery. In contrast, early endocytic/recycling compartments have the highest probability for mRNA escape. By using super-resolution microscopy, we could resolve a single LNP-mRNA within subendosomal compartments and capture events of mRNA escape from endosomal recycling tubules. Our results change the view of the mechanisms of endosomal escape and define quantitative parameters to guide the development of mRNA formulations toward higher efficacy and lower cytotoxicity.


Asunto(s)
Endocitosis , Endosomas/metabolismo , Liposomas/metabolismo , Nanopartículas/metabolismo , ARN Mensajero/metabolismo , Células HeLa , Humanos , ARN Mensajero/genética , Transferrina/metabolismo , Proteínas de Unión al GTP rab/metabolismo
19.
RNA ; 28(3): 433-446, 2022 03.
Artículo en Inglés | MEDLINE | ID: mdl-34949721

RESUMEN

Detection of nucleic acids within subcellular compartments is key to understanding their function. Determining the intracellular distribution of nucleic acids requires quantitative retention and estimation of their association with different organelles by immunofluorescence microscopy. This is particularly important for the delivery of nucleic acid therapeutics, which depends on endocytic uptake and endosomal escape. However, the current protocols fail to preserve the majority of exogenously delivered nucleic acids in the cytoplasm. To solve this problem, by monitoring Cy5-labeled mRNA delivered to primary human adipocytes via lipid nanoparticles (LNP), we optimized cell fixation, permeabilization, and immunostaining of a number of organelle markers, achieving quantitative retention of mRNA and allowing visualization of levels that escape detection using conventional procedures. The optimized protocol proved effective on exogenously delivered siRNA, miRNA, as well as endogenous miRNA. Our protocol is compatible with RNA probes of single molecule fluorescence in situ hybridization (smFISH) and molecular beacon, thus demonstrating that it is broadly applicable to study a variety of nucleic acids in cultured cells.


Asunto(s)
Técnica del Anticuerpo Fluorescente/métodos , Hibridación Fluorescente in Situ/métodos , ARN/metabolismo , Células Cultivadas , Fijadores/química , Colorantes Fluorescentes/química , Células HeLa , Humanos , Nanopartículas/química , ARN/química , Procesamiento Postranscripcional del ARN , Transporte de ARN
20.
Chem Commun (Camb) ; 57(83): 10911-10914, 2021 Oct 19.
Artículo en Inglés | MEDLINE | ID: mdl-34590632

RESUMEN

We present Zn2+-dependent dimethyl-dipyridophenazine PNA conjugates as efficient RNA cleaving artificial enzymes. These PNAzymes display site-specific RNA cleavage with 10 minute half-lives and cleave clinically relevant RNA models.


Asunto(s)
Ácidos Nucleicos de Péptidos/química , Fenazinas/química , Piridinas/química , ARN/química , Catálisis , Concentración de Iones de Hidrógeno , Hidrólisis , Ribonucleasas/química , Zinc/química
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...