Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 8 de 8
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Cancer Biol Ther ; 25(1): 2296048, 2024 12 31.
Artículo en Inglés | MEDLINE | ID: mdl-38206570

RESUMEN

CD73 is a cell surface 5'nucleotidase (NT5E) and key node in the catabolic process generating immunosuppressive adenosine in cancer. Using a murine monoclonal antibody surrogate of Oleclumab, we investigated the effect of CD73 inhibition in concert with cytotoxic therapies (chemotherapies as well as fractionated radiotherapy) and PD-L1 blockade. Our results highlight improved survival in syngeneic tumor models of colorectal cancer (CT26 and MC38) and sarcoma (MCA205). This therapeutic outcome was in part driven by cytotoxic CD8 T-cells, as evidenced by the detrimental effect of CD8 depleting antibody treatment of MCA205 tumor bearing mice treated with anti-CD73, anti-PD-L1 and 5-Fluorouracil+Oxaliplatin (5FU+OHP). We hypothesize that the improved responses are tumor microenvironment (TME)-driven, as suggested by the lack of anti-CD73 enhanced cytopathic effects mediated by 5FU+OHP on cell lines in vitro. Pharmacodynamic analysis, using imaging mass cytometry and RNA-sequencing, revealed noteworthy changes in specific cell populations like cytotoxic T cells, B cells and NK cells in the CT26 TME. Transcriptomic analysis highlighted treatment-related modulation of gene profiles associated with an immune response, NK and T-cell activation, T cell receptor signaling and interferon (types 1 & 2) pathways. Inclusion of comparator groups representing the various components of the combination allowed deconvolution of contribution of the individual therapeutic elements; highlighting specific effects mediated by the anti-CD73 antibody with respect to immune-cell representation, chemotaxis and myeloid biology. These pre-clinical data reflect complementarity of adenosine blockade with cytotoxic therapy, and T-cell checkpoint inhibition, and provides new mechanistic insights in support of combination therapy.


Asunto(s)
Anticuerpos Monoclonales , Sarcoma , Animales , Ratones , Anticuerpos Monoclonales/farmacología , Anticuerpos Monoclonales/uso terapéutico , Inmunosupresores , Adenosina , Fluorouracilo/farmacología , Fluorouracilo/uso terapéutico , Microambiente Tumoral
2.
Clin Cancer Res ; 30(8): 1567-1581, 2024 Apr 15.
Artículo en Inglés | MEDLINE | ID: mdl-37882675

RESUMEN

PURPOSE: Platinum and PARP inhibitors (PARPi) demonstrate activity in breast and ovarian cancers, but drug resistance ultimately emerges. Here, we examine B7-H4 expression in primary and recurrent high-grade serous ovarian carcinoma (HGSOC) and the activity of a B7-H4-directed antibody-drug conjugate (B7-H4-ADC), using a pyrrolobenzodiazepine-dimer payload, in PARPi- and platinum-resistant HGSOC patient-derived xenograft (PDX) models. EXPERIMENTAL DESIGN: B7-H4 expression was quantified by flow cytometry and IHC. B7-H4-ADC efficacy was tested against multiple cell lines in vitro and PDX in vivo. The effect of B7-H4-ADC on cell cycle, DNA damage, and apoptosis was measured using flow cytometry. RESULTS: B7-H4 is overexpressed in 92% of HGSOC tumors at diagnosis (n = 12), persisted in recurrent matched samples after platinum treatment, and was expressed at similar levels across metastatic sites after acquired multi-drug resistance (n = 4). Treatment with B7-H4-ADC resulted in target-specific growth inhibition of multiple ovarian and breast cancer cell lines. In platinum- or PARPi-resistant ovarian cancer cells, B7-H4-ADC significantly decreased viability and colony formation while increasing cell-cycle arrest and DNA damage, ultimately leading to apoptosis. Single-dose B7-H4-ADC led to tumor regression in 65.5% of breast and ovarian PDX models (n = 29), with reduced activity in B7-H4 low or negative models. In PARPi and platinum-resistant HGSOC PDX models, scheduled B7-H4-ADC dosing led to sustained tumor regression and increased survival. CONCLUSIONS: These data support B7-H4 as an attractive ADC target for treatment of drug-resistant HGSOC and provide evidence for activity of an ADC with a DNA-damaging payload in this population. See related commentary by Veneziani et al., p. 1434.


Asunto(s)
Inmunoconjugados , Neoplasias Ováricas , Femenino , Humanos , Inhibidores de Poli(ADP-Ribosa) Polimerasas/farmacología , Inmunoconjugados/farmacología , Inmunoconjugados/uso terapéutico , Platino (Metal)/farmacología , Platino (Metal)/uso terapéutico , Neoplasias Ováricas/tratamiento farmacológico , Neoplasias Ováricas/genética , Neoplasias Ováricas/patología , Apoptosis , Carcinoma Epitelial de Ovario/tratamiento farmacológico , Línea Celular Tumoral
3.
Clin Cancer Res ; 29(6): 1086-1101, 2023 03 14.
Artículo en Inglés | MEDLINE | ID: mdl-36355054

RESUMEN

PURPOSE: We evaluated the activity of AZD8205, a B7-H4-directed antibody-drug conjugate (ADC) bearing a novel topoisomerase I inhibitor (TOP1i) payload, alone and in combination with the PARP1-selective inhibitor AZD5305, in preclinical models. EXPERIMENTAL DESIGN: IHC and deep-learning-based image analysis algorithms were used to assess prevalence and intratumoral heterogeneity of B7-H4 expression in human tumors. Several TOP1i-ADCs, prepared with Val-Ala or Gly-Gly-Phe-Gly peptide linkers, with or without a PEG8 spacer, were compared in biophysical, in vivo efficacy, and rat toxicology studies. AZD8205 mechanism of action and efficacy studies were conducted in human cancer cell line and patient-derived xenograft (PDX) models. RESULTS: Evaluation of IHC-staining density on a per-cell basis revealed a range of heterogeneous B7-H4 expression across patient tumors. This informed selection of bystander-capable Val-Ala-PEG8-TOP1i payload AZ14170133 and development of AZD8205, which demonstrated improved stability, efficacy, and safety compared with other linker-payload ADCs. In a study of 26 PDX tumors, single administration of 3.5 mg/kg AZD8205 provided a 69% overall response rate, according to modified RECIST criteria, which correlated with homologous recombination repair (HRR) deficiency (HRD) and elevated levels of B7-H4 in HRR-proficient models. Addition of AZD5305 sensitized very low B7-H4-expressing tumors to AZD8205 treatment, independent of HRD status and in models representing clinically relevant mechanisms of PARPi resistance. CONCLUSIONS: These data provide evidence for the potential utility of AZD8205 for treatment of B7-H4-expressing tumors and support the rationale for an ongoing phase 1 clinical study (NCT05123482). See related commentary by Pommier and Thomas, p. 991.


Asunto(s)
Inmunoconjugados , Neoplasias , Ratas , Humanos , Animales , Inmunoconjugados/farmacología , Inmunoconjugados/uso terapéutico , Inhibidores de Topoisomerasa I , Neoplasias/tratamiento farmacológico , Inhibidores de Poli(ADP-Ribosa) Polimerasas/farmacología , Inhibidores de Poli(ADP-Ribosa) Polimerasas/uso terapéutico , Poli(ADP-Ribosa) Polimerasa-1/genética
4.
Pharm Stat ; 18(6): 688-699, 2019 11.
Artículo en Inglés | MEDLINE | ID: mdl-31140720

RESUMEN

Linear models are generally reliable methods for analyzing tumor growth in vivo, with drug effectiveness being represented by the steepness of the regression slope. With immunotherapy, however, not all tumor growth follows a linear pattern, even after log transformation. Tumor kinetics models are mechanistic models that describe tumor proliferation and tumor killing macroscopically, through a set of differential equations. In drug combination studies, although an additional drug-drug interaction term can be added to such models, however, the drug interactions suggested by tumor kinetics models cannot be translated directly into synergistic effects. We have developed a novel statistical approach that simultaneously models tumor growth in control, monotherapy, and combination therapy groups. This approach makes it possible to test for synergistic effects directly and to compare such effects among different studies.


Asunto(s)
Protocolos de Quimioterapia Combinada Antineoplásica/administración & dosificación , Inmunoterapia/métodos , Modelos Teóricos , Neoplasias/tratamiento farmacológico , Interacciones Farmacológicas , Sinergismo Farmacológico , Humanos , Cinética , Modelos Lineales , Neoplasias/patología , Resultado del Tratamiento
5.
Cancer Immunol Res ; 5(1): 29-41, 2017 01.
Artículo en Inglés | MEDLINE | ID: mdl-27923825

RESUMEN

Murine syngeneic tumor models are critical to novel immuno-based therapy development, but the molecular and immunologic features of these models are still not clearly defined. The translational relevance of differences between the models is not fully understood, impeding appropriate preclinical model selection for target validation, and ultimately hindering drug development. Across a panel of commonly used murine syngeneic tumor models, we showed variable responsiveness to immunotherapies. We used array comparative genomic hybridization, whole-exome sequencing, exon microarray analysis, and flow cytometry to extensively characterize these models, which revealed striking differences that may underlie these contrasting response profiles. We identified strong differential gene expression in immune-related pathways and changes in immune cell-specific genes that suggested differences in tumor immune infiltrates between models. Further investigation using flow cytometry showed differences in both the composition and magnitude of the tumor immune infiltrates, identifying models that harbor "inflamed" and "non-inflamed" tumor immune infiltrate phenotypes. We also found that immunosuppressive cell types predominated in syngeneic mouse tumor models that did not respond to immune-checkpoint blockade, whereas cytotoxic effector immune cells were enriched in responsive models. A cytotoxic cell-rich tumor immune infiltrate has been correlated with increased efficacy of immunotherapies in the clinic, and these differences could underlie the varying response profiles to immunotherapy between the syngeneic models. This characterization highlighted the importance of extensive profiling and will enable investigators to select appropriate models to interrogate the activity of immunotherapies as well as combinations with targeted therapies in vivo Cancer Immunol Res; 5(1); 29-41. ©2016 AACR.


Asunto(s)
Antineoplásicos Inmunológicos/farmacología , Descubrimiento de Drogas , Evaluación Preclínica de Medicamentos , Animales , Antígeno B7-H1/antagonistas & inhibidores , Antígeno CTLA-4/antagonistas & inhibidores , Hibridación Genómica Comparativa , Variaciones en el Número de Copia de ADN , Modelos Animales de Enfermedad , Sinergismo Farmacológico , Exoma , Regulación Neoplásica de la Expresión Génica/efectos de los fármacos , Genómica/métodos , Secuenciación de Nucleótidos de Alto Rendimiento , Inmunomodulación/efectos de los fármacos , Inmunomodulación/genética , Ratones , Terapia Molecular Dirigida , Mutación , Neoplasias/tratamiento farmacológico , Neoplasias/genética , Neoplasias/inmunología , Neoplasias/metabolismo , Transducción de Señal/efectos de los fármacos , Transcriptoma , Microambiente Tumoral/efectos de los fármacos , Microambiente Tumoral/genética , Microambiente Tumoral/inmunología
6.
ACS Med Chem Lett ; 4(8): 742-6, 2013 Aug 08.
Artículo en Inglés | MEDLINE | ID: mdl-24900741

RESUMEN

Deregulation of HER family signaling promotes proliferation and tumor cell survival and has been described in many human cancers. Simultaneous, equipotent inhibition of EGFR-, HER2-, and HER3-mediated signaling may be of clinical utility in cancer settings where the selective EGFR or HER2 therapeutic agents are ineffective or only modestly active. We describe the discovery of AZD8931 (2), an equipotent, reversible inhibitor of EGFR-, HER2-, and HER3-mediated signaling and the structure-activity relationships within this series. Docking studies based on a model of the HER2 kinase domain helped rationalize the increased HER2 activity seen with the methyl acetamide side chain present in AZD8931. AZD8931 exhibited good pharmacokinetics in preclinical species and showed superior activity in the LoVo tumor growth efficacy model compared to close analogues. AZD8931 is currently being evaluated in human clinical trials for the treatment of cancer.

7.
Clin Cancer Res ; 16(4): 1159-69, 2010 Feb 15.
Artículo en Inglés | MEDLINE | ID: mdl-20145185

RESUMEN

PURPOSE: To test the hypothesis that simultaneous, equipotent inhibition of epidermal growth factor receptor (EGFR; erbB1), erbB2 (human epidermal growth factor receptor 2), and erbB3 receptor signaling, using the novel small-molecule inhibitor AZD8931, will deliver broad antitumor activity in vitro and in vivo. EXPERIMENTAL DESIGN: A range of assays was used to model erbB family receptor signaling in homodimers and heterodimers, including in vitro evaluation of erbB kinase activity, erbB receptor phosphorylation, proliferation in cells, and in vivo testing in a human tumor xenograft panel, with ex vivo evaluation of erbB phosphorylation and downstream biomarkers. Gefitinib and lapatinib were used to compare the pharmacological profile of AZD8931 with other erbB family inhibitors. RESULTS: In vitro, AZD8931 showed equipotent, reversible inhibition of EGFR (IC(50), 4 nmol/L), erbB2 (IC(50), 3 nmol/L), and erbB3 (IC(50), 4 nmol/L) phosphorylation in cells. In proliferation assays, AZD8931 was significantly more potent than gefitinib or lapatinib in specific squamous cell carcinoma of the head and neck and non-small cell lung carcinoma cell lines. In vivo, AZD8931 inhibited xenograft growth in a range of models while significantly affecting EGFR, erbB2, and erbB3 phosphorylation and downstream signaling pathways, apoptosis, and proliferation. CONCLUSIONS: AZD8931 has a unique pharmacologic profile providing equipotent inhibition of EGFR, erbB2, and erbB3 signaling and showing greater antitumor activity than agents with a narrower spectrum of erbB receptor inhibition in specific preclinical models. AZD8931 provides the opportunity to investigate whether simultaneous inhibition of erbB receptor signaling could be of utility in the clinic, particularly in the majority of solid tumors that do not overexpress erbB2.


Asunto(s)
Receptores ErbB/antagonistas & inhibidores , Quinazolinas/farmacología , Receptor ErbB-2/antagonistas & inhibidores , Receptor ErbB-3/antagonistas & inhibidores , Animales , Carcinoma de Células Escamosas/tratamiento farmacológico , Línea Celular Tumoral , Proliferación Celular/efectos de los fármacos , Gefitinib , Neoplasias de Cabeza y Cuello/tratamiento farmacológico , Humanos , Lapatinib , Ratones , Ratones Desnudos , Ratones SCID , Quinazolinas/agonistas , Transducción de Señal/efectos de los fármacos , Ensayos Antitumor por Modelo de Xenoinjerto
8.
Anticancer Drugs ; 20(10): 856-66, 2009 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-19657272

RESUMEN

Two small-molecule epidermal growth factor receptor tyrosine kinase inhibitors, gefitinib and erlotinib, have been approved for the treatment of non-small-cell lung cancer. Here, we compare the pharmacology and pharmacokinetics of these agents, and reflect on how these properties may affect important clinical questions including the clinical efficacy, optimum dose, and whether there is a relationship between skin rash and clinical outcome for each of these agents. Gefitinib and erlotinib have similar mechanisms of action and pharmacological profiles; however, different molecular structures confer pharmacokinetic differences that may have important clinical implications. Although gefitinib 250 mg/day produces lower mean plasma concentrations and area under the plasma concentration versus time curve compared with erlotinib 150 mg/day, published data suggest that gefitinib significantly accumulates in tumour tissue. This difference may partly explain why it seems possible to achieve maximum clinical efficacy with gefitinib at doses significantly lower than its maximum tolerated dose and, hence, use of an optimal biological dose approach with this agent. We hypothesize that gefitinib is used and is effective at a dose below the maximum tolerated dose as it accumulates in tumour tissue, thus providing the concentration needed at its target to achieve effective epidermal growth factor receptor inhibition in the tumour while causing less skin toxicity than erlotinib; therefore, skin rash is not a useful predictive factor for efficacy with gefitinib.


Asunto(s)
Carcinoma de Pulmón de Células no Pequeñas/tratamiento farmacológico , Receptores ErbB/antagonistas & inhibidores , Quinazolinas/farmacología , Quinazolinas/farmacocinética , Animales , Antineoplásicos/efectos adversos , Antineoplásicos/farmacocinética , Antineoplásicos/farmacología , Antineoplásicos/uso terapéutico , Clorhidrato de Erlotinib , Exantema/inducido químicamente , Gefitinib , Humanos , Quinazolinas/efectos adversos , Quinazolinas/uso terapéutico , Ensayos Clínicos Controlados Aleatorios como Asunto
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...